$ \def\Mod{\operatorname{Mod}} \def\O{\mathcal{O}} \def\Homs{\mathcal{H}om} \def\Hom{\operatorname{Hom}} \def\F{\mathcal{F}} \def\G{\mathcal{G}} $ Let $X$ be a ringed space, $U\subset X$ be an open subset and $j:U\to X$ be the inclusion. Then the functor $j^{-1}:\Mod(\O_X)\to\Mod(\O_U)$ has a left adjoint, $j_!:\Mod(\O_U)\to\Mod(\O_X)$, the extension by zero (for details, see 009Z for example).
Given a morphism of ringed spaces $f:X\to Y$, the adjunction $f^*:\Mod(\O_Y)\rightleftarrows\Mod(\O_X):f_*$ can be enhanced to a hom sheaf isomorphism $$ f_*\mathcal{H}om_{\O_X}(f^*\mathcal{F},\mathcal{G}) \cong \mathcal{H}om_{\O_Y}(\mathcal{F},f_*\mathcal{G}). $$ (See this post, for example).
I was wondering if something similar could be performed with the adjunction $j_!\dashv j^{-1}$. Maybe something like this? $$ \tag{1}\label{sheaf_adj} \Homs_{\O_X}(j_!\F,\G)\cong j_*\Homs_{\O_U}(\F,j^{-1}\G). $$