Let $ r = [x, y, z]^T $
Then
$ r = r_0 + \cos(t) v_1 + \sin(t) v_2 = r_0 + [v_1, v_2] U(t) $
where $r_0 = \begin{bmatrix} \frac{1}{4} \\ 0 \\ 0 \end{bmatrix},\hspace{20pt} v_1 = \begin{bmatrix} -1.5 \\ 2 \\ 0 \end{bmatrix} , \hspace{20pt} v_2 = \begin{bmatrix} -0.25 \\ 0 \\ 1 \end{bmatrix} ,\hspace{20pt} U(t) = \begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix} $
Using Gram-Schmidt orthogonalization, we get
$ [v_1, v_2] = [w_1, w_2] G $
where
$ w_1 = \begin{bmatrix} -0.6 \\ 0.8 \\ 0 \end{bmatrix} , w_2 = \begin{bmatrix} -0.156892908 \\ -0.117669681 \\ 0.980580676 \end{bmatrix} $
and
$ G = \begin{bmatrix} 2.5 && 0.15 \\ 0 && 1.019803903 \end{bmatrix} $
Note that the set $\{ w_1, w_2 \} $ is an orthonormal set, therefore, $r$ can be described by a $2D$ coordinate vector $ u $, i.e.
$ r = r_0 + W u $
where $W = [w_1, w_2]$ and $ u = G U(t) \Longleftrightarrow U(t) = G^{-1} u $
To find the equation governing $u$, we use the fact that
$ U^T(t) U(t) = 1 $
From which it follows that
$ u^T G^{-T} G^{-1} u = 1 \hspace{20pt} (1a)$
And we have
$ G^{-T} G^{-1} =\begin{bmatrix} 0.16 && -0.023533936 \\ -0.023533936 && 0.965 \end{bmatrix} $
Diagonalizing $G^{-T}G^{-1} $ into $ R D R^T $, we find that
$ D = \begin{bmatrix} 0.159312579 && 0 \\ 0 && 0.965687421 \end{bmatrix}$
$ R = \begin{bmatrix} 0.999573668 && -0.029197307 \\ -0.029197307 && 0.999573668 \end{bmatrix} $
Now equation $(1a)$ can be re-written as
$ u^T R D R^T u = 1 \hspace{20pt} (1b) $
So that
$ D^{1/2} R^T u = U(s) $
where $U(s)$ is the unit vector
$U(s) = \begin{bmatrix} \cos(s) \\ \sin(s) \end{bmatrix} $
Thus, finally, the coordinate vector $u$ can be expressed as,
$ u = R D^{-1/2} U(s) $
And with that,
$ r = r_0 + W u = r_0 + W R D^{-1/2} U(s) $
So the orthogonal vectors that represent the semi-major and semi-minor axes of the ellipse $r$ are the columns of the $3 \times 2 $ matrix $ W R D^{-1/2} $ which is given by
$ W R D^{-1/2} = \begin{bmatrix} -1.514068635 && -0.14176096 \\ 1.994848166 && -0.14346009 \\ 0.071730043 && 0.997424083 \end{bmatrix} $
The first column of the above matrix has a length of $2.505387841 $ and the second column has a length of $1.017610813 $
Therefore, the semi-major axis is along the the first column, and the semi-minor axis is along the second column.
The center, of course, is $r_0$.
Note that
$ r - r_0 = [v_1, v_2] U(t) = W G U(t) = W R D^{-1/2} U(s) $
Hence,
$ U(t) = G^{-1} R D^{-1/2} U(s) $
But $G^{-T} G^{-1} = R D R^T $, so it follows that $G^{-1} = R' D^{1/2} R^T $ for some rotation matrix $R'$, which is given by $R' = G^{-1} R D^{-1/2} $
Therefore,
$ U(t) = R' U(s) $
i.e. $\begin{bmatrix} \cos(t) \\ \sin(t) \end{bmatrix} = \begin{bmatrix} \cos(\theta) && - \sin(\theta) \\ \sin(\theta) && \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(s) \\ \sin(s) \end{bmatrix} $
From this it follows that $ t = s + \theta + 2 k \pi , \ k $ integer.