We have
$$
W^p_1 (\mu, \nu) \le W^p_p (\mu, \nu) \le (\mathrm{diam} X)^p W_1 (\mu, \nu) \quad \forall p \in [1, +\infty).
$$
So it suffices to prove for $p=1$. Let
$$
\mathrm{Lib} (f) := \sup_{x\neq y} \frac{|f(x) - f(y)|}{|x-y|}.
$$
- Assume $W_1 (\mu_m, \mu) \to 0$.
By Kantorovich-Rubinstein theorem, we have
$$
W_1 (\mu_m, \nu) = \sup \left \{\int_X f \mathrm d (\mu_m-\nu) \,\middle\vert\, f \in L_1 (|\mu_m-\nu|) , \mathrm{Lib} (f) \le 1\right \}.
$$
Let $f$ be bounded Lipschitz-continuous such that $\mathrm{Lib} (f) > 0$. Then $\frac{f}{\mathrm{Lib} (f)}$ is $1$-Lipschitz. Then
$$
\int_X \frac{f}{\mathrm{Lib} (f)} \mathrm d (\mu_m-\nu) \to 0.
$$
So
$$
\int_X f \mathrm d (\mu_m-\nu) \to 0,
$$
The result then follows from Portmanteau theorem.
- Assume $\mu_m \overset{\ast}{\rightharpoonup} \mu$.
Let $m_k$ be a subsequence such that
$$
\lim_k W_1 (\mu_{m_k}, \mu) = \limsup_m W_1 (\mu_m, \mu).
$$
Fix $a \in X$. Let $g_k$ be a Lipschitz funtion such that $\mathrm{Lib} (g_k) \le 1$ and
$$
W_1 (\mu_{m_k}, \mu) \le \int_X g_k \mathrm d (\mu_{m_k} - \mu) + \frac{1}{k} = \int_X (g_k - g_k (a)) \mathrm d (\mu_{m_k} - \mu) + \frac{1}{k} .
$$
It follows from $(\mu_{m_k} - \mu) (X) = 0$ that
$$
\int_X g_k (a) \mathrm d (\mu_{m_k} - \mu) = 0 \quad \forall k.
$$
Let $g'_k := g_k - g_k (a)$. Then $\mathrm{Lib} (g'_k) \le 1$ and $(g'_k)_k$ is bounded by $\mathrm{diam} X$. By Arzelà –Ascoli theorem, there is $g$ and a subsequence (re-labelled) such that $g'_k \to g$ in $\|\cdot\|_\infty$. Clearly, $\mathrm{Lib} (g) \le 1$. Finally,
$$
\begin{align}
\int_X g'_k \mathrm d (\mu_{m_k} - \mu) &= \int_X (g'_k-g) \mathrm d (\mu_{m_k} - \mu) + \int_X g \mathrm d (\mu_{m_k} - \mu) \\
&= \int_X (g'_k-g) \mathrm d (\mu_{m_k} - \mu)^+ - \int_X (g'_k-g) \mathrm d (\mu_{m_k} - \mu)^- + \int_X g \mathrm d (\mu_{m_k} - \mu) \\
&\le 2 \|g'_k-g\|_\infty (\mu_{m_k} - \mu)^+ (X) + \int_X g \mathrm d (\mu_{m_k} - \mu) \\
&\le 4 \|g'_k-g\|_\infty + \int_X g \mathrm d (\mu_{m_k} - \mu).
\end{align}
$$
The result then follows by taking the limit $k \to \infty$.