We will prove this for any $n\times n$ invertible, positive definite matrix $A$. Since $A^{-1}$ is also a positive definite matrix, with eigenvalues corresponding to the reciprocals of the original's, your statement is equivalent to proving: $$||A\textbf{x}||\leq \lambda_{\text{max}}||\textbf{x}||$$
Where $\lambda_{\text{max}}$ is the largest eigenvalue of $A$.
We will use the fact that, for any symmetric matrix, there exists of basis of $\mathbb{R}^{n}$ with only mutually perpendicular unit eigenvectors (an orthonormal eigenbasis). This is not difficult to prove; see here. For $A$, let such a basis be $\{\textbf{v}_{1}, \textbf{v}_{2},\dots,\textbf{v}_{n}\}$, corresponding to (possibly repeated) eigenvalues $\lambda_{1},\lambda_{2},...,\lambda_{n}$.
Consider some vector $\textbf{x} = c_{1}\textbf{v}_{1} + c_{2}\textbf{v}_{2} + \dots + c_{n}\textbf{v}_{n}$. Then:
$$\begin{align} A\textbf{x}& = A(c_{1}\textbf{v}_{1} + c_{2}\textbf{v}_{2} + \dots + c_{n}\textbf{v}_{n}) \\ &= c_{1}A\textbf{v}_{1} + c_{2}A\textbf{v}_{2} +\dots+c_{n}A\textbf{v}_{n} \\ &= c_{1}\lambda_{1}\textbf{v}_{1} + c_{2}\lambda_{2}\textbf{v}_{2} + \dots + c_{n}\lambda_{n}\textbf{v}_{n}\end{align}$$
Since the basis is orthonormal:
$$\begin{align} ||A\textbf{x}||&= \sqrt{(c_{1}\lambda_{1})^{2} + (c_{2}\lambda_{2})^{2} + \dots + (c_{n}\lambda_{n})^{2}} \\ &\leq \sqrt{\lambda_{\text{max}}^{2}(c_{1}^{2} + c_{2}^{2} + \dots + c_{n}^{2})}\\ &= \lambda_{\text{max}} \sqrt{c_{1}^{2}+c_{2}^{2}+\dots+c_{n}^{2}}\end{align}$$
Then, since $\textbf{x} = c_{1}\textbf{v}_{1} + c_{2}\textbf{v}_{2} + \dots + c_{n}\textbf{v}_{n}$, we have $||\textbf{x}|| = \sqrt{c_{1}^{2} + c_{2}^{2} + \dots + c_{n}^{2}}$, so we can conclude that $||A\textbf{x}||\leq \lambda_{\text{max}}||\textbf{x}||.\ \blacksquare$
Note that this inequality does not always hold for non-symmetric matrices, even if they do have an eigenbasis. For instance, consider:
$$C = \begin{bmatrix} 0 & \frac{1}{r} \\ r & 0\end{bmatrix}$$
$C$ has eigenvalues of $\pm 1$, so an eigenbasis exists. However, $\left|\left|C\begin{bmatrix} 1 \\ 0\end{bmatrix}\right|\right| = r$, so for $r>1$ the inequality is violated.