There is a nice, simple, $\color{red}{\large 1,400}$ years old approximation
$$\cos(x) \simeq\frac{\pi ^2-4x^2}{\pi ^2+x^2}\qquad (-\frac \pi 2 \leq x\leq\frac \pi 2)$$ which gives as an estimate
$$x^2=\frac{1}{2} \left(-4-\pi ^2+\sqrt{16+12 \pi ^2+\pi ^4}\right)$$ that is to say
$$x=\pm 0.823660$$ while the exact solution, given by Newton method, is $x=\pm 0.824132$.
You can polish the root using the fact that the estimate is close to $\frac \pi 4$ and then use a series expansion
$$x^2-\cos(x)=\left(\frac{\pi ^2}{16}-\frac{1}{\sqrt{2}}\right)+\left(\frac{1}{\sqrt{2}}+\frac{\pi
}{2}\right) \left(x-\frac{\pi }{4}\right)+\left(1+\frac{1}{2 \sqrt{2}}\right)
\left(x-\frac{\pi }{4}\right)^2+O\left(\left(x-\frac{\pi }{4}\right)^3\right)$$ Solving the quadratic gives
$$x=\pm\frac{-4 \sqrt{2}+\sqrt{2} \pi +2 \sqrt{24+\frac{8192+2048 \pi -256 \pi ^2}{128\sqrt{2}}}}{4 \left(4+\sqrt{2}\right)}=\pm 0.824129$$
Edit
Even if it does not make any sense, notice that
$$\cos \left(\frac{35 \pi }{229}\right)-\sin \left(\frac{\pi }{50}\right)$$ approximates the solution within an error of $4.53 \times 10^{-9}$ (this was found by a trigonometric inverse calculator of mine).