I am trying to show that the set of numbers of the form $e^{2\pi ina}$, where $a$ is irrational and $n\in\mathbb Z$ , is dense in the unit circle.
Solution: Noting that elements of the unit circle can be written as $z=e^{2\pi i\theta}$ with $\theta\in\mathbb R$, and using the standard topology of $\mathbb C$;
\begin{align*} \left|e^{2\pi ian}-e^{2\pi i\theta}\right| &= \big|[\cos(2\pi an)-\cos(2\pi\theta)]-i[\sin(2\pi an)-\sin(2\pi\theta)]\big|\\ &= \left|-2\sin[\pi(na-\theta)]\sin[\pi(na+\theta)]-2i\sin[\pi(na-\theta)\cos[\pi(na+\theta)]\right|\\ &=2|\sin[\pi(na-\theta)]||\sin[\pi(na+\theta)]+i\cos[\pi(na+\theta)]|\\ &=2|\sin[\pi(na-\theta)]|\leq 2\pi|na-\theta|<2\pi\epsilon_1=\epsilon. \end{align*}
I have used the following: $$\cos(P)-\cos(Q)=-2\sin\left(\frac{P+Q}{2}\right)\sin\left(\frac{P-Q}{2}\right),~ \sin(P)-\sin(Q) = 2\cos\left(\frac{P+Q}{2}\right)\sin\left(\frac{P-Q}{2}\right)$$ and $|\sin x|\leq |x|$.
The last inequality follows from the fact that there is always a real number ($\theta$) arbitrarily close to any rational number ($na$).
This last argument makes me feel like I have cheated (a bit). Is there a way to complete this exercise without the prior knowledge of the denseness of the rationals on the real line? Furthermore, please recommend alternative approaches, if there are any.