$$ \int \frac{\sin^{8}(x)}{\sin^{8}(x) + \cos^{8}(x)} dx $$
is there more efficient and elegant way? Other than the solution below.
a solution:
Let $ I = \int \frac{\sin^{8}(x)}{\sin^{8}(x) + \cos^{8}(x)} dx $,
$$ \int \frac{\sin^{8}(x)}{\sin^{8}(x) + \cos^{8}(x)} dx = \int \frac{\sin^{8}(x) + \cos^{8}(x) - \cos^{8}(x)}{\sin^{8}(x) + \cos^{8}(x)} dx = x - \int \frac{\cos^{8}(x)}{ \sin^{8}(x) + \cos^{8}(x) }dx $$
so we have $2I$ is:
$$ 2I = x + \int \frac{\sin^{8}(x)-\cos^{8}(x)}{ \sin^{8}(x) + \cos^{8}(x) }dx $$
Now,
$$ \sin^{8}(x) - \cos^{8}(x) = \left[ \sin^{4}(x) - \cos^{4}(x) \right] \left[ \sin^{4}(x) + \cos^{4}(x) \right] $$ $$ = \left[ \sin^{2}(x) - \cos^{2}(x) \right]\left[ \sin^{2}(x) + \cos^{2}(x) \right] \left[ (\sin^{2}(x) + \cos^{2}(x))^{2} - 2 \sin^{2}(x)\cos^{2}(x) \right] $$ $$ = \left[ \sin^{2}(x) - \cos^{2}(x) \right] \left[1 - 2 \sin^{2}(x)\cos^{2}(x) \right] $$
For the denominator:
$$ \sin^{8}(x) + \cos^{8}(x) = \left[ \sin^{4}(x) + \cos^{4}(x) \right]^{2} - 2 \sin^{4}(x)\cos^{4}(x) $$ $$ = \left[ (\sin^{2}(x) + \cos^{2}(x))^{2} - 2 (\sin(x)\cos(x))^{2} \right]^{2} - 2 \sin^{4}(x)\cos^{4}(x) $$ $$ = \left[1 - 2 (\sin(x)\cos(x))^{2} \right]^{2} - 2 (\sin(x)\cos(x))^{4} $$
Now
$$ 2I =x+ \int \frac{ \left[ \sin^{2}(x) - \cos^{2}(x) \right] \left[1 - 2 \sin^{2}(x)\cos^{2}(x) \right] }{\left[1 - 2 (\sin(x)\cos(x))^{2} \right]^{2} - 2 (\sin(x)\cos(x))^{4}} dx $$
Let $U = \sin(x) \cos(x)$, then $U'(x) = \cos^{2}(x) - \sin^{2}(x)$, so
$$ 2I = x- \int \frac{\left[1 - 2 U^{2} \right] }{\left[1 - 2 U^{2} \right]^{2} - 2 U^{4}} dU $$ $$ = x- \int \frac{\left[ 2 U^{2} - 1 \right] }{ (1 - (2 + \sqrt{2})U^{2})(1 + (\sqrt{2} - 2)U^{2})} dU $$
And from here I can continue using Partial Fraction: $$- \int \frac{\left[ 2 U^{2} - 1 \right] }{ (1 - (2 + \sqrt{2})U^{2})(1 + (\sqrt{2} - 2)U^{2})} dU = -\frac{1}{2}\int \frac{1}{ (1 - (2 + \sqrt{2})U^{2})} + \frac{1}{(1 - (2 - \sqrt{2})U^{2})} dU $$
and then for each of the 2 terms we use Partial Fraction again. First, let $\alpha = \sqrt{2+\sqrt{2}}U$, $\beta = \sqrt{2-\sqrt{2}}U$, so we have
$$ = -\frac{1}{2\sqrt{2+\sqrt{2}}}\int \frac{1}{ 1 - \alpha^{2}} d \alpha - \frac{1}{2\sqrt{2-\sqrt{2}}} \int \frac{1}{(1 - \beta^{2})} d \beta $$
then we have
$$ = -\frac{1}{2\sqrt{2+\sqrt{2}}} \left( \int \frac{1/2}{1-\alpha} d \alpha + \int \frac{1/2}{1+\alpha} d\alpha \right) - \frac{1}{2\sqrt{2-\sqrt{2}}} \left( \int \frac{1/2}{1-\beta } d \beta + \int \frac{1/2}{1 + \beta } d \beta \right) $$
$$ = -\frac{1}{4\sqrt{2+\sqrt{2}}} \left( -\ln(1-\alpha) + \ln(1+\alpha) \right) - \frac{1}{4\sqrt{2-\sqrt{2}}} \left( -\ln(1-\beta) + \ln(1+\beta) \right) $$