Question
My attempt
$ -\arg(z1/z2)=\arg(z1)-\arg(z2) $
$z1=(x+\alpha)+iy $ and $ z2=(x+\beta)+iy $
$\arg(z1)=\arctan(y/x+\alpha) $ and $ \arg(z2)=\arctan(y/x+\beta) $ ....
But this method is very lengthy. Is there another elegant approach?
Question
My attempt
$ -\arg(z1/z2)=\arg(z1)-\arg(z2) $
$z1=(x+\alpha)+iy $ and $ z2=(x+\beta)+iy $
$\arg(z1)=\arctan(y/x+\alpha) $ and $ \arg(z2)=\arctan(y/x+\beta) $ ....
But this method is very lengthy. Is there another elegant approach?