We know that:
$$\prod_{n=1}^\infty(e^{-n}+1)=\left(-1,\frac1e\right)_\infty$$ with the Q Pocchhammer symbol $(a,q)_k$, but what if we made it:
$$P=\prod_{n=1}^\infty(ne^{-n}+1)= 2.27396845235252995…?$$
which does not appear in oeis. Here are some other forms of the constant:
$$\prod_{n=1}^\infty(ne^{-n}+1)=\lim_{k\to\infty}\frac{\prod\limits_{n=1}^k (e^n+n)}{e^\frac{k(k+1)}2}=\exp\left(\sum_{n=1}^\infty\ln(ne^{-n}+1)\right)=\exp\left(\lim_{k\to \infty}-\frac{k(k+1)}2+\sum_{n=1}^k \ln(e^n+n) \right)$$
If it helps, multiply over the product’s argument’s inverse’s range using the $-1$st branch of Lambert W:
$$\prod_{n=1}^\infty(ne^{-n}+1) = \prod_{-\text W_{-1}(n-1)=1}^\infty n$$
Using an integral:
$$\sum_{n=1}^\infty\ln(ne^{-n}+1)=-\int_0^\infty \lfloor x\rfloor d(\ln(xe^{-x}+1))=\int_0^\infty \frac{x\lfloor x\rfloor}{e^x+x}-\frac{\lfloor x\rfloor}{e^x+x} dx=0.8215265…$$
Additionally, expanding $\ln(x+1)$ and switching sums gives the polylogarithm function:
$$\ln(P)=-\sum_{n=1}^\infty\sum_{k=1}^\infty\frac{n^k e^{-nk}}k=\sum_{n=1}^\infty\frac{(-1)^{n+1}}n\operatorname{Li}_{-n}(e^{-n})$$
$\operatorname{Li}_{-n}(x),n\in\Bbb N$ is a rational function which can be used.
Finally,
OEIS A022629, $a_n$, is about such products and gives $\displaystyle P=\sum_{n=0}^\infty a_ne^{-n}$
Is there a closed form or a new alternate form of the $2.27396845235252995…$ constant in terms of other sums, integrals, special functions, named constants etc?