Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be positive real sequences such that $$\lim_{n\to\infty}\frac{a_{n+1}-a_n}n=a\in \mathbb R_{>0}\qquad\text{and}\qquad \lim_{n\to\infty}\frac{b_{n+1}}{nb_n}=b\in \mathbb R_{>0}.$$ Compute $$\lim_{n\to\infty}\left(\frac{a_{n+1}}{\sqrt[n+1]{b_{n+1}}}-\frac{a_n}{\sqrt[n]{b_n}}\right).$$
This is W5 of József Wildt International Mathematical Competition, 2020. I have made some progresses and got stuck.
Using Cauchy's criterion, I have obtained that $\sqrt[n]{\frac{b_{n+1}}{b_1n!}}\to b$ and thus $$\sqrt[n]{\frac{b_n}{b_1n!}}=\sqrt[n]{\frac{b_{n+1}}{b_1n!}}\cdot\sqrt[n]{\frac{nb_n}{b_{n+1}}}\cdot\sqrt[n]{\frac1n}\to b,\qquad\text{as}\ \ n\to\infty.$$ Stirling's formula implies that $\lim_{n\to\infty}\frac{\sqrt[n]{b_n}}n=\frac be$. Now it seems resonable to guess that $$\lim_{n\to\infty}\left(\frac{a_{n+1}}{\sqrt[n+1]{b_{n+1}}}-\frac{a_n}{\sqrt[n]{b_n}}\right)=\lim_{n\to\infty}\left(\frac{\frac{a_{n+1}}{n}}{\frac{\sqrt[n+1]{b_{n+1}}}{n}}-\frac{\frac{a_n}n}{\frac{\sqrt[n]{b_n}}n}\right)\overset{?}{=}\lim_{n\to\infty}\frac eb\frac{a_{n+1}-a_n}n=\frac{ae}b\tag{1};$$ or another possibility $$\lim_{n\to\infty}\left(\frac{a_{n+1}}{\sqrt[n+1]{b_{n+1}}}-\frac{a_n}{\sqrt[n]{b_n}}\right)=\lim_{n\to\infty}\left(\frac{\frac{a_{n+1}}{n+1}}{\frac{\sqrt[n+1]{b_{n+1}}}{n+1}}-\frac{\frac{a_n}n}{\frac{\sqrt[n]{b_n}}n}\right)\overset{?}{=}\frac eb\lim_{n\to\infty}\left(\frac{a_{n+1}}{n+1}-\frac{a_n}n\right),\tag{2}$$ where the limit $\lim_{n\to\infty}\left(\frac{a_{n+1}}{n+1}-\frac{a_n}n\right)$ can be obtained by $$\frac{a_{n+1}}{n+1}-\frac{a_n}n=\frac{a_{n+1}-a_n}n+\frac{a_{n+1}}{n+1}-\frac{a_{n+1}}n=\frac{a_{n+1}-a_n}n-\frac{a_{n+1}}{n(n+1)}$$ and Cesaro-Stolz: $\lim_{n\to\infty}\frac{a_{n+1}}{n(n+1)}=\lim_{n\to\infty}\frac{a_{n+1}-a_n}{n(n+1)-(n-1)n}=\frac a2$, so $\lim_{n\to\infty}\left(\frac{a_{n+1}}{n+1}-\frac{a_n}n\right)=a-\frac a2=\frac a2$. In $(1)$ and $(2)$ above, I don't know the eact reasons for both '$?$', I just guess them.
Therefore, when I looked at the same limit from two different points of view, namely $(1)$ and $(2)$, I got different results, which makes me confused. I wonder which one is correct and what is the rigorous proof.
Could someone help me to finish this problem?