What the value of $i^{\frac{1}{2}}$ is ?
From the definition of exponential of complex numbers, I have $$i^{\frac{1}{2}}=e^{\frac{1}{2}\log i}.$$
And since $\log i=\log 1+\arg i =\left(\dfrac{\pi}{2}+2n\pi \right) i,$ I get
$i^{\frac{1}{2}}=e^{\frac{1}{2}(\frac{\pi}{2}+2n\pi) i}=e^{(\frac{\pi}{4}+n\pi) i}
=\cos(\frac{\pi}{4}+n\pi) +i\sin(\frac{\pi}{4}+n\pi)=(-1)^n\cdot \dfrac{1+i}{\sqrt 2}.$
So, I get two values $\dfrac{1+i}{\sqrt 2}, -\dfrac{1+i}{\sqrt 2}.$
But according to wolfram alpha https://www.wolframalpha.com/input?i=i%5E%7B1%2F2%7D , $i^{\frac{1}{2}}=\dfrac{1+i}{\sqrt 2}.$
Is $-\dfrac{1+i}{\sqrt 2}$ a false value ? Do I overlook something about the definition of exponential of complex nubmers ?