$$
\begin{align}
\int_0^{\frac\pi2}\sqrt[n]{\tan(x)}\,\mathrm{d}x\
&=\int_0^\infty\frac{u^{1/n}\,\mathrm{d}u}{1+u^2}\tag{1a}\\
&=\frac12\int_0^\infty\frac{v^{\frac{1-n}{2n}}}{1+v}\,\mathrm{d}v\tag{1b}\\
&=\frac\pi2\csc\left(\pi\frac{n+1}{2n}\right)\tag{1c}\\[6pt]
&=\frac\pi2\sec\left(\frac\pi{2n}\right)\tag{1d}
\end{align}
$$
Explanation:
$\text{(1a)}$: set $x=\tan^{-1}(u)$
$\text{(1b)}$: set $u=v^{1/2}$
$\text{(1c)}$: apply $(2)$ below
$\text{(1d)}$: $\csc(\pi/2+x)=\sec(x)$
Here is the argument from $(3)$ of this answer with more explanation:
$$
\begin{align}
\int_0^\infty\frac{x^{\alpha-1}}{1+x}\,\mathrm{d}x
&=\int_0^1\frac{x^{-\alpha}+x^{\alpha-1}}{1+x}\,\mathrm{d}x\tag{2a}\\
&=\sum_{k=0}^\infty(-1)^k\int_0^1\left(x^{k-\alpha}+x^{k+\alpha-1}\right)\mathrm{d}x\tag{2b}\\
&=\sum_{k=0}^\infty(-1)^k\left(\frac1{k-\alpha+1}+\frac1{k+\alpha}\right)\tag{2c}\\
&=\sum_{k\in\mathbb{Z}}\frac{(-1)^k}{k+\alpha}\tag{2d}\\[6pt]
&=\pi\csc(\pi\alpha)\tag{2e}
\end{align}
$$
Explanation:
$\text{(2a)}$: break the integral into two parts: $[0,1]$ and $(1,\infty)$
$\phantom{\text{(2a):}}$ substitute $x\mapsto1/x$ in the second part
$\text{(2b)}$: apply the series for $\frac1{1+x}$
$\text{(2c)}$: evaluate the integrals
$\text{(2d)}$: write as a principal value sum
$\text{(2e)}$: apply $(8)$ from this answer