I am currently stuck trying to prove that LHS = RHS,
such that for LHS:
$$ab \equiv (b\pmod m)\cdot(a\pmod m)$$
and RHS:
$$[(a\pmod m)\cdot(b\pmod m)] \equiv ab\pmod m$$
I understand that:
$a\equiv b\pmod m$ is by definition equivalent to $m\mid(a−b)$.
$a\equiv b\pmod m$; $a,b\in\mathbb{Z},m\in\mathbb{Z}^+$ iff $a\pmod m \equiv b\pmod m$.
and using:
$a = mq_1 + r_1$
$b = mq_2 + r_2$.