Define $\psi(x)= \exp\Bigl(\frac{-1}{x(1-x)}\Bigr)$ for $x \in (0,1)$ and $\psi(x)=0$
for $x \notin (0,1)$. Then $\psi$ is a $C^\infty$ bump function which vanishes with all its derivatives at $0$ and at $1,$ and satisfies $\psi(1/2)=e^{-4}$.
Next, define $\varphi:[-1,1] \to [0,\infty)$ as follows: $\:$
First, $\varphi(0):=0$. Second,
$$\forall k \ge 1, \quad \forall x\in (2^{-k},2^{1-k}], \quad \text{let} \quad
\varphi(x)=1+ \cdot\psi(2^k x-1) \,, $$
so that
$$\forall k \ge 1, \quad \varphi(2^{-k})=1 \quad \text{and} \quad
\varphi(3\cdot2^{-k-1})=1+ e^{-4} \,, \tag{*}$$
This defines $\varphi$ on $[0,1]$. Finally, for $x \in [-1,0]$ define
$\varphi(-x)=-\varphi(x)$.
Now we let
$\Phi(x)=\int_{-1}^x \varphi(t) \, dt$. Then $\Phi$ is a differentiable and injective function on $(-1,1)$, yet $\Phi'=\varphi$ is discontinuous at $0$.