This is more of a comment than an answer - but it's long and doesn't fit as a comment. It does respond to your comment "The only way I can think of to approach this is ...".
- Only certain numbers of attempts can get you home. If 0 backwards slides occur, then you arrive home in 3 steps. If 1 backwards slide occurs you get home in 5 attempts (the original 3 + 1 backward slide of 1 step + 1 step you need to recover). If 2 backwards slides occur you get home in 8 attempts (the original 3 + 2 backward slides of 3 steps total + 3 steps you need to recover).
Generally if k backward slides occur the number of attempts to get home is 3 + k + (k*(k+1)/2).
The backwards slides can't occur in just any spot in your safe journey. For instance if there's 1 backwards slide total, it can't occur in attempt 4 or 5. Two ways of thinking of that - a) if it occured in attempt 4, you must have been at least one step away anyway, so the backward slide in 4 would place you 2 steps away and attempt 5 couldn't get you home; b) if it occurred in 4 or 5 that means attempts 1, 2, and 3 were all forward so you would be home already after attempt 3.
The number of possible different attempt paths that get you home after k backslide attempts would be overestimated by using (3 + k + (k*(k+1)/2)) choose k. The top represents the total number of attempts while the bottom represents the backslides during those attempts. What you need to do is remove the overcounting as some of those attempt paths would have resulted in arriving at home already.
The way to remove them is to subtract the following for each lower number k of backslides:
the number of valid attempt routes for i backslides * the number of possible choices in the remaining attempts for k-i choices.
- Examples - call f(k) the number of valid attempt routes for k backslides
f(0) = 1 (attempts 1,2,3 are all positive)
f(1) = (5 choose 1) - f(0) * ((5-3) choose 0) = 3
f(2) = (8 choose 2) - f(0) * ((8-3) choose 2) - f(1) * ((8-5) choose 1) = 9
Continuing in this manner I arrived at
f(3) = 37, f(4)=173, f(5)=1402, f(6)=14096.
- Multiplying f(k) * probability of k backslides * probability of 3 + (k*(k+1)/2) forward attempts gives us the probability of achieving a safe path with k backslides.
I got the following probabilities for arriving home after exactly k backslides
0 - 0.5787037037
1 - 0.2411265432
2 - 0.08372449417
3 - 0.03319836982
4 - 0.01247627397
5 - 0.006772193099
6 - 0.003800480282
- Summing those together I got the following cumulative probabilties of a safe trip after up to k backslides
0 - 0.5787037037
1 - 0.8198302469
2 - 0.9035547411
3 - 0.9367531109
4 - 0.9492293849
5 - 0.956001578
6 - 0.9598020583
- I didn't actually program this up but used a calculator and a spreadsheet so I might have made mistakes along the way. If you're interested try coding this technique and let k run much higher. I'm sure you'll see close to the 97% mentioned in the comments.
Here's my counting.
no bad throws - occurs 1 way - 57.9% 1 bad throws - occurs 3 ways (bad throw being 1, 2, or 3) - 24.1% 2 bad throws - occurs 9 ways (bad being 12, 13, 14, 15, 23, 24, 25, 34, 35) - 8.4% 3 bad throws - occurs 37 ways (bad being 123, 124, 125, 126, 127, 128, 134, 135, 136, 137, 138, 145, 146, 147, 148, 156, 157, 158, 234, 235, 236, 237, 238, 245, 246, 247, 248, 256, 257, 258, 345 346, 347, 348, 356, 357, 358) - 3.3%
Completing after up to 3 bad throws I have 93.7%.
– Mike O'Connor Jun 27 '22 at 19:03