Find all positive integer values of $\dfrac{a^2+b^2}{ab+1}$.
Vieta-Jumping Solution:
\begin{align} &\text{let } \dfrac {a^2+b^2}{ab+1}=k. \\ \ \\ &a^2+b^2=kab+k. \\ &a^2-(kb)a+(b^2-k)=0. \\ \ \\ &\text{let $(a, b)=(a_0, b_0)$ be the root which $a_0+b_0$ is the smallest, $a_0\geq b_0$.} \tag{A}\label{A} \\ \ \\ &(a_0, b_0) \Rightarrow \bigg(\dfrac{b_0^2-k}{a_0}, b_0 \bigg) \Rightarrow \bigg(b_0, \dfrac{b_0^2-k}{a_0}\bigg). \\ \ \\ &a_0 \geq b_0, a_0b_0 \geq b_0^2, a_0b_0 >b_0^2-k, b_0>\dfrac{b_0^2-k}{a_0}. \\ \ \\ & \therefore a_0+b_0 > b_0+\dfrac{b_0^2-k}{a_0}, \text{Contradiction of } \ref{A}. \\ \ \\ &\therefore b_0^2-k\leq0, b_o^2\leq k. \\ & \text{When } b_0=k=1, a_0=1, \text{ and these are the smallest ones which satisfies $b_0^2\leq k.$} \\ \ \\ &\therefore (a, b, k)=(1, 1, 1). \end{align}
Is there another solution that doesn't use Vieta-Jumping?