Let $f$ be an unbounded non-decreasing function s.t. $\sum\frac{1}{2^{f(n)}}$ converges.
Does $\sum\frac{1}{nf(n) \log(n)}$ converge?
My thoughts:
Since $\sum\frac{1}{2^{f(n)}}$ converges, then $\ logn = O(f(n))$, otherwise it will diverge.
And now we can use comparison test to find an upper bound using $a_n = 1/n \log^2n$.
Am I correct?
thanks.