Question: prove $\Gamma(a)\Gamma(b) = \Gamma(a+b)B(a,b)$ using polar transformation:
my attempt:
L.H.S = $$\Gamma(a)\Gamma(b) = \int_0^{\infty}\int_0^{\infty}e^{-(x+y)}x^{a-1}y^{b-1}dxdy$$
Let $x = r\cos(\theta),y = r\sin(\theta)$
then $$\Gamma(a)\Gamma(b) = \int_0^{\pi/2}\int_0^{\infty}re^{-r(\cos(\theta)+\sin(\theta))}r^{a+b-2}\cos^{a-1}(\theta)\sin^{b-1}(\theta)drd\theta$$
$$= \int_0^{\pi/2}\cos^{a-1}(\theta)\sin^{b-1}(\theta)d\theta\int_0^{\infty}e^{-r(\cos(\theta)+\sin(\theta))}r^{a+b-1}dr $$
the first integral is almost $ = B(a,b)$ and the second integral is almost $ = \Gamma(a+b)$
but I am stuck there and cannot separate $\cos(\theta) + \sin(\theta)$ from $e$
any help is much appreciated.