0

The Riemann-Siegel theta function $\theta(t)$ is well-behaved and satisfies $\zeta(\frac{1}{2}+it)=Z(t)e^{-i\theta(t)}$ for real $Z(t)$. Because of how smoothly $\theta(t)$ changes, $Z(t)$ changes signs around roots, allowing us to find zeroes on the critical line using Brent's method and similar methods.

I'm trying to find a generalization of the Riemann-Siegal theta function to Dirichlet L-functions that has a similar "explicit formula". The argument of L-functions on the critical line is similarly smooth, but it's distinctly different from the argument of the zeta function shown from "Orientation" of $\zeta$ zeroes on the critical line:

Argument of Dirichlet L-function with character period 17 and index 2

The only evidence I have that such a function exists is from a piece of the source code for finding zeroes of L-functions in Sage, which describes "rotating" values of the L-function to the reals, but I do not understand what it is calculating.

What could a generalization of the Riemann-Siegal theta function be, and how would we calculate it?

2 Answers2

1

For $\chi$ a primitive Dirichlet character, let $$\xi(s,\chi) = \left(\frac{q}{\pi}\right)^{(s+a)/2} \Gamma\left(\frac{s+a}{2}\right) L(s,\chi)$$ with $a=0$ if $\chi$ is even and $a=1$ if $\chi$ is odd, we have the functional equation $$\xi(s,\chi) = \varepsilon(\chi) \xi(1-s,\overline{\chi})$$ where $\varepsilon(\chi) = \frac{\tau(\chi)}{i^a \sqrt{q}}$ has modulus $1$.

For $s=1/2+it,t\in \Bbb{R}$ it becomes $$\varepsilon(\chi)^{-1/2}\xi(1/2+it,\chi) = \overline{\varepsilon(\chi)^{-1/2}\xi(1/2+it,\chi)}$$ ie. the $\Bbb{R\to R}$ function with the same critical line zeros is $$Z(t,\chi)=\varepsilon(\chi)^{-1/2}\xi(1/2+it,\chi)$$

reuns
  • 77,999
0

Although the other response isn't incorrect, it doesn't quite answer the posed question and instead gives the generalization of the Riemann Xi function $\Xi$ for $L$ functions. The $Z$ and $\theta$ functions are supposed to be a polar decomposition of the zeta function on the critical line.

This decomposition is of the form $$\zeta\left(\frac{1}{2}+it\right)=Z(t)e^{-i\theta(t)}$$ satisfying the property that if $t\in\mathbb{R}$, then $Z(t),\theta(t)\in\mathbb{R}$.

The $Z$ function has the special property that if $t\in\mathbb{R}$, then $|\zeta\left(\frac{1}{2}+it\right)|=|Z(t)|$ which is not satisfied by the $\Xi$ function.

Now, your question wants the generalization of this $Z$ function to $L$ functions. So, we can start with the zeta function as an example for how to construct these.

Finding $Z$ and $\theta$ for $\zeta$

First, recall the definition of $\zeta$ $$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}$$

$\zeta$, $Z$, and $\theta$ are holomorphic whose restriction to the real numbers is real-valued. So, using properties of the complex conjugate, we have that $$\overline{\zeta(s)}=\zeta(\overline{s})$$ $$\overline{Z(t)}=Z(\overline{t})$$ $$\overline{\theta(t)}=\theta(\overline{t})$$

Specifically letting $s=\frac{1}{2}+it$ for $t\in\mathbb{R}$, $$Z(t)e^{i\theta(t)}=\overline{Z(t)}e^{i\overline{\theta(t)}}=\overline{Z(t)e^{-i\theta(t)}}=\overline{\zeta\left(\frac{1}{2}+it\right)}=\zeta\left(\overline{\frac{1}{2}+it}\right)=\zeta\left(\frac{1}{2}-it\right)$$

The major insight comes from the reflection formula $$\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s)=\pi^{\frac{s-1}{2}}\Gamma\left(\frac{1-s}{2}\right)\zeta(1-s)$$

Plugging in $s=\frac{1}{2}+it$ and rearranging, we get $$\frac{\zeta\left(\frac{1}{2}+it\right)}{\zeta\left(\frac{1}{2}-it\right)}=\frac{\pi^{it}\Gamma\left(\frac{1-2it}{4}\right)}{\Gamma\left(\frac{1+2it}{4}\right)}$$

Now, using the representations of $\zeta\left(\frac{1}{2}+it\right)$ and $\zeta\left(\frac{1}{2}-it\right)$ in terms of $Z$ and $\theta$, the $Z$'s cancel each other out, and we have $$\frac{\zeta\left(\frac{1}{2}+it\right)}{\zeta\left(\frac{1}{2}-it\right)}=\frac{Z(t)e^{-i\theta(t)}}{Z(t)e^{i\theta(t)}}=e^{-2i\theta(t)}$$

This gives $\theta(t)$ as $$e^{-2i\theta(t)}=\frac{\pi^{it}\Gamma\left(\frac{1-2it}{4}\right)}{\Gamma\left(\frac{1+2it}{4}\right)}$$ $$\theta(t)=-\frac{i}{2}\left(\ln\Gamma\left(\frac{1+2it}{4}\right)-\ln\Gamma\left(\frac{1-2it}{4}\right)\right)-\frac{\ln(\pi)}{2}t$$

Using the identities $\arg(z)=\frac{\ln(z)-\ln(\overline{z})}{2i}$ and $\overline{\Gamma(z)}=\Gamma(\overline{z})$, we can rewrite this in the commonly seen form as $$\theta(t)=\arg\Gamma\left(\frac{1+2it}{4}\right)-\frac{\ln(\pi)}{2}t$$

The $Z$ function is then just $$Z(t)=\zeta\left(\frac{1}{2}+it\right)e^{i\theta(t)}$$

Finding $Z$ and $\theta$ for $L$ functions

We'll take an extremely similar route to create the $Z$ function. First, let $\chi$ be primitive character modulo $q$ for $q>1$. Then, let's define $Z(t,\chi)$ and $\theta(t, \chi)$ as $$L\left(\frac{1}{2}+it,\chi\right)=Z(t,\chi)e^{-i\theta(t,\chi)}$$

satisfying the property that if $t\in\mathbb{R}$, then $Z(t,\chi),\theta(t,\chi)\in\mathbb{R}$.

Similar to $Z$ and $\theta$ for the $\zeta$ function, because they are holomorphic functions whose restriction to the real numbers is real-valued, we have $$\overline{Z(t,\chi)}=Z(\overline{t},\chi)$$ $$\overline{\theta(t,\chi)}=\theta(\overline{t},\chi)$$

Recall the definition of $L$ $$L(s,\chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s}$$

Now, using properties of the complex conjugate, observe that $$\overline{L(s,\chi)}=\overline{\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s}}=\sum_{n=1}^{\infty}\frac{\overline{\chi}(n)}{n^{\overline{s}}}=L(\overline{s},\overline{\chi})$$

Specifically letting $s=\frac{1}{2}+it$ for $t\in\mathbb{R}$, $$Z(t,\chi)e^{i\theta(t,\chi)}=\overline{Z(t,\chi)}e^{i\overline{\theta(t,\chi)}}=\overline{Z(t,\chi)e^{-i\theta(t,\chi)}}=\overline{L\left(\frac{1}{2}+it,\chi\right)}=L\left(\overline{\frac{1}{2}+it},\overline{\chi}\right)=L\left(\frac{1}{2}-it,\overline{\chi}\right)$$

Again, the major insight comes from the reflection formula $$\left(\frac{q}{\pi}\right)^{\frac{s+a}{2}}\Gamma\left(\frac{s+a}{2}\right)L(s,\chi)=\varepsilon(\chi)\left(\frac{q}{\pi}\right)^{\frac{1-s+a}{2}}\Gamma\left(\frac{1-s+a}{2}\right)L(1-s,\overline{\chi})$$ where $a=0$ if $\chi$ is even and $a=1$ if $\chi$ is odd, and $\varepsilon(\chi)=\frac{\tau(\chi)}{i^a\sqrt{q}}$ satisfies $|\varepsilon(\chi)|=1$.

Plugging in $s=\frac{1}{2}+it$ and rearranging, we get $$\frac{L\left(\frac{1}{2}+it,\chi\right)}{L\left(\frac{1}{2}-it,\overline{\chi}\right)}=\frac{\varepsilon(\chi)\left(\frac{\pi}{q}\right)^{it}\Gamma\left(\frac{1+2a-2it}{4}\right)}{\Gamma\left(\frac{1+2a+2it}{4}\right)}$$

Now, like before, using the representations of $L\left(\frac{1}{2}+it,\chi\right)$ and $L\left(\frac{1}{2}-it,\overline{\chi}\right)$ in terms of $Z$ and $\theta$, the $Z$'s cancel each other out, and we have $$\frac{L\left(\frac{1}{2}+it,\chi\right)}{L\left(\frac{1}{2}-it,\overline{\chi}\right)}=\frac{Z(t,\chi)e^{-i\theta(t,\chi)}}{Z(t,\chi)e^{i\theta(t,\chi)}}=e^{-2i\theta(t,\chi)}$$

This gives $\theta(t,\chi)$ as $$e^{-2i\theta(t,\chi)}=\frac{\varepsilon(\chi)\left(\frac{\pi}{q}\right)^{it}\Gamma\left(\frac{1+2a-2it}{4}\right)}{\Gamma\left(\frac{1+2a+2it}{4}\right)}$$ $$\theta(t,\chi)=-\frac{i}{2}\left(\ln\Gamma\left(\frac{1+2a+2it}{4}\right)-\ln\Gamma\left(\frac{1+2a-2it}{4}\right)\right)-\frac{\ln(\pi)-\ln(q)}{2}t+\frac{i}{2}\ln(\varepsilon(\chi))$$

And like before, using the identities $\arg(z)=\frac{\ln(z)-\ln(\overline{z})}{2i}$ and $\overline{\Gamma(z)}=\Gamma(\overline{z})$, we can rewrite this as $$\theta(t,\chi)=\arg\Gamma\left(\frac{1+2a+2it}{4}\right)-\frac{\ln(\pi)-\ln(q)}{2}t+\frac{i}{2}\ln(\varepsilon(\chi))$$

The corresponding $Z$ function is then just $$Z(t,\chi)=L\left(\frac{1}{2}+it,\chi\right)e^{i\theta(t,\chi)}$$

Hopefully this helps.