More generally, let $\,\alpha\,$ be an irrational root of a rational cubic $\,\alpha^3 - \lambda \alpha^2 - \mu \alpha - \nu = 0\,$, and let $\,x = a + b \alpha + c \alpha^2\,$ for some rational $\,a, b, c\,$. Then, multiplying the first equality below twice by $\,\alpha\,$ and $\,\alpha^2\,$, and substituting $\,\alpha^3 = \lambda \alpha^2 + \mu \alpha + \nu\,$ at each step:
$$
\begin{cases}
\begin{matrix}
a - x &+\, b \alpha &+\, c \alpha^2 &= 0
\\ c\nu &+\, (a+c\mu-x)\alpha &+\, (b+c\lambda)\alpha^2 &= 0
\\ b\nu &+\, (c\nu + b\mu) \alpha &+\, (a + b\lambda-x) \alpha^2 &= 0
\end{matrix}
\end{cases}
$$
Considering the three equations as a linear system in $\,1, \alpha,\alpha^2\,$ which obviously has non-trivial solutions, the condition is for its determinant to be zero, which gives the cubic equation in $\,x\,$:
$$
\begin{vmatrix}
a - x & b & c
\\ c\nu & a+c\mu-x & b+c\lambda
\\ b\nu & c\nu+b\mu & a+b\lambda-x
\end{vmatrix}
= 0
$$
OP's problem is the case $\,\alpha^3 = 5\,$, so $\,\lambda = \mu = 0, \nu = 5\,$, and the polynomial is:
$$
0 = \begin{vmatrix}
a - x & b & c
\\ 5c & a-x & b
\\ 5b & 5c & a-x
\end{vmatrix}
= - \big(x^3 - 3 a x^2 + (3 a^2 - 15 b c) x - a^3 - 5 b^3 - 25 c^3 + 15 a b c\big)
$$
(Note: the above is equivalent to deriving by hand the resultant $\small{\text{res}_{\alpha}(\alpha^3 - 5, x - a - b \alpha - c \alpha^2)}$.)