First of all, we deal with the simple case. $$ \begin{aligned} \int_{0}^{\infty} \frac{\ln \left(ax^{2}+1\right)}{1+x^{2}} d x \stackrel{x=\tan \theta}{=} & \int_{0}^{\frac{\pi}{2}} \ln \left(1+a \tan ^{2} \theta\right) d \theta \\ =& \int_{0}^{\frac{\pi}{2}} \ln \left(\frac{\cos ^{2} \theta+a \sin ^{2} \theta}{\cos ^{2} \theta}\right) d \theta \\ =& \int_{0}^{\frac{\pi}{2}} \ln \left(\cos ^{2} \theta+a \sin ^{2} \theta\right) d \theta-2 \int_{0}^{\frac{\pi}{2}} \ln (\cos \theta) d \theta \\ \end{aligned} $$
Using the result in my post and $2 \int_{0}^{\frac{\pi}{2}} \ln (\cos \theta) d \theta =-\pi \ln 2$ yields $$ \begin{aligned} \int_{0}^{\infty} \frac{\ln \left(1+ax^{2}\right)}{1+x^{2}} d x &=\pi \ln \left(\frac{1+\sqrt{a}}{2}\right)+\pi \ln 2 =\pi \ln (1+\sqrt{a}) \end{aligned} \tag*{(*)} $$
\begin{aligned} & \int_{0}^{\infty} \frac{\ln \left(a x^{2}+c\right)}{1+x^{2}}d x \\ =& \int_{0}^{\infty} \frac{\left.\ln \left[c(\frac{a}{c} x^{2}+1\right)\right]}{1+x^{2}} d x \\ =& \int_{0}^{\infty} \frac{\ln c}{1+x^{2}} d x+\int_{0}^{\infty} \frac{\ln \left(\frac{a}{c} x^{2}+1\right)}{1+x^{2}} \end{aligned}
Replacing $a$ by $\frac{a}{c}$ in $(*)$ yields
$$ \boxed{\int_{0}^{\infty} \frac{\ln \left(a x^{2}+c\right)}{1+x^{2}}d x =\pi \ln (\sqrt{a}+\sqrt{c})}$$
My question: Can we go further to evaluate a more general integral $$\int_{0}^{\infty} \frac{\ln \left(ax^{2}+bx+1\right)}{1+x^{2}} d x?$$