Does anyone recall the name of the following binomial identity?
Let $k_1,\ldots,k_m$ be non-negative integers and $n\geq \sum_{i=1}^mk_i$. Then
$$\binom{n+m-1}{k_1+k_2+\ldots+k_m+m-1}=\sum_{n_1+n_2+\ldots+n_m=n}\binom{n_1}{k_1}\cdot\ldots\cdot\binom{n_m}{k_m}$$
I used that for some computation regarding the negative hypergeometric distribution. It describes a combinatorial way to create a committee with at least $k_1,\ldots,k_m$ members from $m$ groups.