I have some questions concerning the definition of Heegner points.
Let $K=\mathbb{Q}(\sqrt{D})$ with $D<0$, and $E/\mathbb{Q}$ be an elliptic curve of conductor $N$. Assume that every prime $l\mid N$ splits completely in $K$. Why does this hypothesis imply that there is an ideal $\mathcal{N}\subset \mathcal{O}_K$ such that $\mathcal{O}_K/\mathcal{N}\cong \mathbb{Z}/N\mathbb{Z}$?
Let $n\geq 1$ be an integer coprime to $N$ and $\mathcal{O}_n=\mathbb{Z}+n\mathcal{O}_K$ the order of index $n$ in $\mathcal{O}_K$. I checked that the $\mathcal{O}_n$-module $\mathcal{N}_n:=\mathcal{N}\cap \mathcal{O}_n$ is proper, hence invertible. But why do we have that $\mathcal{O}_n/\mathcal{N}_n\cong \mathbb{Z}/N\mathbb{Z}$?
Thus, $\mathcal{N}_n^{-1}/\mathcal{O}_n\cong \mathbb{Z}/N\mathbb{Z}$. By modularity, the isogeny $\phi:\mathbb{C}/\mathcal{O}_n\longrightarrow \mathbb{C}/\mathcal{N}_n^{-1}$ ($\ker \phi\cong \mathbb{Z}/N\mathbb{Z}$) defines a complex point $x_n$ on the curve $X_0(N)$. My final question is: why does $x_n$ belong to $X_0(N)(K_n)$, where $K_n$ is the ring class field of conductor $n$?
Thank you!