Cauchy Criterion for Uniform Convergence of Sequence of Functions:
A sequence of functions $(f_n)$ defined on a set $A\subseteq\mathbb{R}$ converges uniformly on $A$ if and only if for every $\epsilon>0$ there exists an $N\in\mathbb{N}$ such that $|f_m(x)-f_n(x)|<\epsilon$ whenever $m, n\geq N$ and $x\in A$.
Observation:
- For all $x\in \Bbb R, x^2 \ge 0$.
- For all $n\in \Bbb N, n < 2^n$.
- If $n \in \Bbb N$, then $n+1 \in \Bbb N$. Further, if $n \ge N$, then $n+1 \ge N+1 \ge N$.
Define $m:=n+1, \forall n \in \Bbb N$.
Let $\epsilon>0$ be given. By the Archimedean Principle, there exists $N \in \Bbb N$ with $\frac{1}{N} < \epsilon$ such that for any $m,n \ge N$, we have
\begin{align*}
|f_m(x)-f_n(x)| &= |f_{n+1}(x) - f_n(x)| \\
&\le \frac{1}{2^n+x^2}\\
& < \frac{1}{2^n} \\
&< \frac{1}{n} \\
&\le \frac{1}{N} \\
& < \epsilon,
\end{align*}
for all $x \in \Bbb R$.
Hence, by the Cauchy Criterion for Uniform Convergence of Sequence of Functions above, we have $(f_n)$ is uniformly convergent on $\Bbb R$. Q. E. D.