Me and my friend were trying to solve this integration question for our upcoming exams and we came up with 2 different ways, both are shown in pictures below, I don't know why we got two different answers. I think it's related to domain/range of inverse functions. Please let me know.
1st Method.(original image)
\begin{align*} 2I &= \pi \int_{0}^{\pi} \frac{\sec x \tan x}{1 + \sec^2 x} \, \mathrm{d}x \\ &= \pi \int_{0}^{\frac{\pi}{2}} \left( \frac{\sec x \tan x}{1 + \sec^2 x} + \frac{\sec(\pi-x) \tan(\pi-x)}{1 + \sec^2 x} \right) \, \mathrm{d}x \\ &= 2\pi \int_{0}^{\frac{\pi}{2}} \frac{\sec x \tan x}{1 + \sec^2 x} \, \mathrm{d}x \\ &= 2\pi \left[ \tan^{-1}(\sec x)\right]_{0}^{\frac{\pi}{2}} \\ &= 2\pi \left[ \tan^{-1}(\infty) - \tan^{-1}(1) \right] \\ &= 2\pi \left[ \frac{\pi}{2} - \frac{\pi}{4} \right] = \frac{\pi^2}{2}. \\[1em] \implies & \quad I = \frac{\pi^2}{4}. \end{align*}
2nd Method.(original image)
\begin{align*} 2I &= \int_{0}^{\pi} \frac{\pi \sec x \tan x}{1 + \sec^2 x} \, \mathrm{d}x. \end{align*}
Let $t = \sec x$. Then
$$ \mathrm{d}t = \sec x \tan x \mathrm{d}x, \qquad \text{Limits:} \quad \begin{array}{|c|c|c|} \hline x & 0 & \pi \\ \hline t & 1 & -1 \\ \hline \end{array} $$
So,
\begin{gather*} 2I = \int_{1}^{-1} \frac{\pi}{1+t^2} \, \mathrm{d}t = \left[ \pi \tan^{-1}(t) \right]_{1}^{-1} = \pi \left[ -\frac{\pi}{4} - \frac{\pi}{4} \right] \\[1em] \implies \quad -\frac{\pi^2}{4}. \end{gather*}