For what positive integer values of $x$ is $y = \frac{186-x}{11x+1}$ a positive integer?
Clearly, $y = \frac{186 - x}{11x + 1} < \frac{186 - x}{11} < \frac{186}{11} = 16 + \frac{10}{11} $. So $y$ must be at most 16. What are the bounds on $x$?
$$1 \le \frac{186 - x}{11x + 1} \le 16$$
$$11x + 1 \le 186 - x \le 176x + 16$$
$$12x + 1 \le 186 \text{ and } 186 \le 177x + 16$$
$$x \le 15 + \frac{5}{12} \text{ and } x \ge \frac{170}{177}$$
$$1 \le x \le 15$$
This is a small enough solution space to brute-force. When we do that, we find two solutions:
- $x = 2, y = 8$
- $x = 8, y = 2$