After getting the integral as:
\begin{align}\int_{1}^{b}\frac{(\ln t)^b}{(\ln b)^{b+1}}\,dx\end{align}
It can be seen that upon using the substitution $\ln t = \xi$, the integral gets transformed into:
\begin{align}\frac{1}{(\ln b)^{b+1}}\int_{0}^{\ln b}\xi^be^{\xi}\,d\xi\end{align}
If b is a positive integer, then a recursive method is applicable. If b is a number which is not an integer, we transform the integral
\begin{align}\frac{1}{(\ln b)^{b+1}}\int_{0}^{-\ln \frac{1}{b}}\xi^be^{\xi}\,d\xi=-\frac{(-1)^b}{(\ln b)^{b+1}}\int_{0}^{\ln \frac{1}{b}}\xi^be^{-\xi}\,d\xi\end{align}
\begin{align}=\frac{(-1)^{b+1}}{(\ln b)^{b+1}}\int_{0}^{\ln \frac{1}{b}}\xi^be^{-\xi}\,d\xi=\frac{1}{(\ln \frac{1}{b})^{b+1}}\int_{0}^{\ln \frac{1}{b}}\xi^be^{-\xi}\,d\xi\end{align}
Further, the Incomplete Gamma Function can be used to give
$$
(\ln (\frac{1}{b}))^{-b-1}\gamma(b+1,\ln (\frac{1}{b}))
$$
Coming to the recursion formula, suppose $f(x)=\xi^b$ and $g(x)=e^{\xi}$. Then we know that $g'(x)=g(x)$
This answer explains the recursion, so the solution is
\begin{align}
\frac{1}{(\ln b)^{b+1}}\bigg[\sum\limits_{k = 0}^b {( - 1)^{b - k} \frac{{b!}}{{k!}}\xi^k } \bigg]e^{\xi}\Biggr|_{0}^{\ln b}
\end{align}