$$ \sum_{k=0}^n (-1)^k {n \choose k} k^v = \begin{cases} 0 & (v=0,1,\dots,n-1), \\ (-1)^n n! & (v=n). \end{cases} $$
This formula appears in the book "Introduction to Analysis" (written by Teiji Takagi) ~ Chapter 2 "Differential Method" ~ Section 25 "Taylor's Formula" ~ "Additional Notes" (discussing the "difference" in differential calculus). ( Scanned image of that page)
What I have tried:
$$ \newcommand{\cc}[2]{{\color{#1}#2}} \newcommand{\cR}[1]{\cc{Red}#1} \newcommand{\cO}[1]{\cc{Orange}#1} \newcommand{\cY}[1]{\cc{Yellow}#1} \newcommand{\cG}[1]{\cc{Green}#1} \newcommand{\cB}[1]{\cc{Blue}#1} \newcommand{\cI}[1]{\cc{Indigo}#1} \newcommand{\cV}[1]{\cc{Violet}#1} \begin{align*} \text{LHS} &= -n +\frac{n(n-1)} {2\cdot1} 2^v -\frac{n(n-1)(n-2)} {3\cdot2\cdot1} 3^v + -\cdots +\frac{n(n-1)\cdots1}{n(n-1)\cdots1} n^v \\ & \begin{array}{} = - n \cR( 1 \\ &\kern-1.5em - (n-1) \cO( 2^{v-1} \\ &&\kern-2.8em - (n-2) \cY( \dfrac {3^{v-1}}{2!} \\ &&&\kern-3em - (n-3) \cG( \dfrac {4^{v-1}}{3!} \\ &&&&\kern-3em - (n-4) \cB( \cdots \\ &&&&&\kern-2.2em -\cdots \cI( \cdots \\ &&&&&&\kern-2.2em - 2 \cV( \dfrac{(n-1)^{v-1}}{(n-2)!} \\ &&&&&&&\kern-5.6em - \dfrac {n^{v-1}}{(n-1)!} \cV)\cI)\cB)\cG)\cY)\cO)\cR) \end{array} \end{align*} $$
I'm stuck here, please help me, thanks!
Side note: For alternating sequences, there is a more advanced question that has been answered.
(1) Let $v=n, x=1$, $$\sum_{k=0}^n (-1)^k \dbinom{n}{k} \sum_{v=n}^n \dfrac{k^v x^v}{v!} = \sum_{k=0}^n (-1)^k \dbinom{n}{k} k^n,\frac{1}{n!},$$ How is it possible to get the result directly? There are still many steps in the middle, right?!
(2) What about for $v>n$ (to $\infty$)? (since you used $(1-e^x)$, but the result doesn't contain the "imprint" that $e^x$ expands to infinity, which surprises me)
– ooo Jun 05 '22 at 04:03