We use the result that $$\lim_{x \to 0}\frac{\sin x}{x}=1$$
from this result we also have, $$\lim_{x \to 0}\frac{\sin \pi x}{\pi x}=1\text{ and } \lim_{x \to 0} \frac{\sin (\frac{\pi x}{2})^2}{(\frac{\pi x}{2})^2}=1$$
Now,$$\lim_{x \to 0}\frac{\sin \pi x \cdot(1-\cos\pi x)}{x^2 \cdot \sin x}=\lim_{x \to 0}\frac{\sin \pi x \cdot(2\sin (\frac{\pi x}{2})^2)}{x^2 \cdot \sin x}\\=\lim_{x \to 0} \frac{\sin \pi x}{\pi x}\cdot\pi\cdot\frac{x}{\sin x}\cdot\frac{\pi ^2}{4}\cdot2\cdot\frac{\sin (\frac{\pi x}{2})^2)}{(\frac{\pi x}{2})^2}=\frac{\pi ^3}{2}\lim_{x \to 0} \frac{\sin \pi x}{\pi x}\cdot\frac{x}{\sin x}\cdot\frac{\sin (\frac{\pi x}{2})^2}{(\frac{\pi x}{2})^2}=\frac{\pi ^3}{2}$$