If $A,B\subseteq X$ is closed in $X$ and $A\cap B=\emptyset$, then $\exists f:X\to [0,1]$ such that $f$ is continuous, $f(A)=\{0\}$ and $f(B)=\{1\}$ $\implies$ $X$ is normal.
Munkres’ defined normal space as $T_1$ and $T_4$. Showing $X$ is $T_4$ is trivial. Since $f$ is continuous, $f^{-1}([0,x)), f^{-1}((y,1])\in \mathcal{T}_X$, where $0\lt x\lt y\lt 1$. By elementary set theory, $A\subseteq f^{-1}(f(A))=f^{-1}(\{0\}) \subseteq f^{-1}([0,x))$ and $B\subseteq f^{-1}(f(B))=f^{-1}(\{1\})\subseteq f^{-1}((y,1])$. Hence $\exists f^{-1}([0,x)), f^{-1}((y,1])\in \mathcal{T}_X$ such that $A\subseteq f^{-1}([0,x))$, $B\subseteq f^{-1}((y,1])$ and $ f^{-1}([0,x))\cap f^{-1}((y,1]) =f^{-1}([0,x) \cap (y,1])=f^{-1}(\emptyset)=\emptyset$. Now how to show $X$ is $T_1$?