Given the binary operator $*$ of a finite (even small) commutative group, literally or as a table, how can I proceed to identify the name a mathematician knowing group classification would call it (short of learning group classification)?
If there's no silver bullet, what's a standard name for this particular one?
Let $p>2$ be a prime, and integer $a\in[2,p)$ such that $a^{(p-1)/2}\equiv-1\pmod p$. Let $S=\{\infty\}\cup\mathbb F_p$. Define the binary operation $*$ on $S$: $$u*v=\begin{cases} v&\text{if }u=\infty\\ u&\text{if }u\ne\infty\text{ and }v=\infty\\ \infty&\text{if }u\ne\infty\text{ and }v\ne\infty\text{ and }u+v\equiv0\pmod p\\ \displaystyle\frac{u\,v+a}{u+v}\bmod p&\text{otherwise} \end{cases}$$
$(S,*)$ is a commutative group of order $p+1$, with unity $\infty$, and a single other root of unity $0$.
Example for $p=7$, $a=3$ $$\begin{array}{c} &&&&&&&&\quad&\text{order}\\ \infty&0&1&2&3&4&5&6&&1\\ 0&\infty&3&5&1&6&2&4&&2\\ 1&3&2&4&5&0&6&\infty&&8\\ 2&5&4&0&6&3&\infty&1&&4\\ 3&1&5&6&2&\infty&4&0&&8\\ 4&6&0&3&\infty&5&1&2&&8\\ 5&2&6&\infty&4&1&0&3&&4\\ 6&4&\infty&1&0&2&3&5&&8\\ \end{array} $$ Update: Added the order of each element.
Update: The group can be constructed as an Elliptic Curve Group on $\mathbb F_p$ for the curve $y^2=x(x-a)^2$, where $(x,y)=(u^2,u(u^2-a))$. That curve, with the field $\mathbb R$.
Update: Made the unity $\infty$.