I have read an article in Wikipedia. https://en.wikipedia.org/wiki/Prenex_normal_form
$(\forall x\phi)\lor\psi\Leftrightarrow\forall x(\phi\lor\psi)$
$(\exists x\phi)\land\psi\Leftrightarrow\exists x(\phi\land\psi)$
$(\exists x\phi)\rightarrow\psi\Leftrightarrow\forall x(\phi\rightarrow\psi)$
$\psi\rightarrow(\forall x\phi)\Leftrightarrow\forall x(\psi\rightarrow\phi)$
$(\forall x\phi)\land\psi\Leftrightarrow\forall x(\phi\land\psi)$
$(\exists x\phi)\lor\psi\Leftrightarrow\exists x(\phi\lor\psi)$
$(\forall x\phi)\rightarrow\psi\Leftrightarrow\exists x(\phi\rightarrow\psi)$
$\psi\rightarrow(\exists x\phi)\Leftrightarrow\exists x(\psi\rightarrow\phi)$
I notice that all the equivalences are under the condition that $x$ does not appear as a free variable of $\psi$ , but the last four equivalences need an additional condition that $\exists x\top$.
So my question is what does $\exists x\top$ mean (I couldn't understand the note "meaning that at least one individual exists" in Wikipedia)? If possible, please tell me why the last four equivalences need the additional condition while the previous four don't need.