$\tan ^{-1}(\frac 12 \tan 2A)+\tan^{-1} ( \cot A) +\tan ^{-1}(\cot ^3 A)=\begin{cases} 0 & \frac {\pi} 4\lt A \le \frac {\pi} 2\\ \pi & 0\le A \le \frac {\pi} 2 \end {cases} $
Try
$\tan ^{-1}(\cot A) +\tan^{-1} (\cot^3 A) =\tan^{-1} (-\frac 12 \tan 2A) $
Now the problem reduces to finding the value of
$\tan ^{-1}(\frac 12 \tan 2A)+\tan ^{-1}(-\frac 12 \tan 2A)$
Now when $\frac {\pi} 4\lt A \le \frac {\pi} 2$ then $2A$ lies in the second quadrant, so the value of $\tan 2A $ is negative there, hence the value of $\frac 12 \tan 2A$ will be negative and the value of $-\frac 12 \tan 2A$ will be positive. I'm stucked here. How to justify the next steps from this calculation in the way I'm trying to justify by considering quadrant.