You had the right idea. Let me redirect you to the correct way to think.
So, yes you need to use $e$ at some point, but before that you need to get rid of that annoying $x$ in the exponent. An easy way to do that is to apply $\ln$ to your limit, let me show you:
$$\ln(\lim_{x \to \infty} (\frac{ax+b}{cx+d})^x) = \lim_{x \to \infty} \ln((\frac{ax+b}{cx+d})^x) $$
Now, we use the fact:
$$\ln(a^x) = x\ln(a)$$
So, we get:
$$\lim_{x \to \infty} \ln((\frac{ax+b}{cx+d})^x) = \lim_{x \to \infty} x\ln(\frac{ax+b}{cx+d})$$
All we need to solve is $\lim_{x \to \infty} \frac{ax+b}{cx+d} = \lim_{x \to \infty} \frac{x(a+\frac bx)}{x(c+\frac dx)} = \lim_{x \to \infty} \frac{a+\frac bx}{c+\frac dx} = \frac ac$.
Case 1: $\frac ac \gt 1 \Rightarrow \ln(\frac ac) \gt 0$
Now we can find the limit: $$\lim_{x \to \infty} x\ln(\frac{ax+b}{cx+d}) = \infty \cdot \ln(\frac ac) = + \infty$$
Finally, we shouldn't forget that we applied $\ln$ at the start so we must undo it! To do that, we must apply $e$ to the result since $e^{\ln x} = x$.
So, $$\lim_{x \to \infty} (\frac{ax+b}{cx+d})^x = e^{\infty} = \infty $$
Case 2: $0 \lt \frac ac \lt 1 \Rightarrow \ln(\frac ac) \lt 0$
Now we can find the limit: $$\lim_{x \to \infty} x\ln(\frac{ax+b}{cx+d}) = \infty \cdot \ln(\frac ac) = - \infty$$
Finally, we shouldn't forget that we applied $\ln$ at the start so we must undo it! To do that, we must apply $e$ to the result since $e^{\ln x} = x$.
So, $$\lim_{x \to \infty} (\frac{ax+b}{cx+d})^x = e^{- \infty} = 0 $$
Case 3: $\frac ac = 1 \Rightarrow \ln(\frac ac) = 0$
If we were to find the limit as before we will run into the problem of: $$\lim_{x \to \infty} x\ln(\frac{ax+b}{cx+d}) = \infty \cdot \ln(\frac ac) = \infty \cdot 0$$
an indeterminate form!
To fix that, we can rewrite the last limit to get $\frac 00$, let me show you:
$$\lim_{x \to \infty} x\ln(\frac{ax+b}{cx+d}) = \lim_{x \to \infty} \frac{\ln(\frac{ax+b}{cx+d})}{\frac 1x} = \frac 00$$
$\frac 00$ is useful because we can use L'Hôpital's rule, so let's plug in the derivatives:
$$\lim_{x \to \infty} \frac{\ln(\frac{ax+b}{cx+d})}{\frac 1x} = \lim_{x \to \infty} \frac{\frac{ad-bc}{\left(ax+b\right)\left(cx+d\right)}}{- \frac {1}{x^2}}$$
Now we finally need to do some modifications to finish the limit as follows:
\begin{align}
\lim_{x \to \infty} \frac{\frac{ad-bc}{\left(ax+b\right)\left(cx+d\right)}}{- \frac {1}{x^2}} &=
\lim_{x \to \infty} \frac{ad-bc}{(ax+b)(cx+d)} \cdot (-x^2)\\
&=
\lim_{x \to \infty} \frac{ad-bc}{x(a+\frac bx)x(c+ \frac dx)} \cdot (-x^2) \\
&=
\lim_{x \to \infty} \frac{ad-bc}{(a+\frac bx)(c+ \frac dx)} \cdot (-1) \\
&=
\lim_{x \to \infty} \frac{bc-ad}{(a+\frac bx)(c+ \frac dx)} \\
&=
\frac{bc-ad}{ac} \\
&=
\frac ba - \frac dc
\end{align}
Finally, we shouldn't forget that we applied $\ln$ at the start so we must undo it! To do that, we must apply $e$ to the result since $e^{\ln x} = x$.
So, $$\lim_{x \to \infty} (\frac{ax+b}{cx+d})^x = e^{\frac ba - \frac dc}$$