Our goal is the universal conditional statement
$$ \forall a \; \biggl[\; a \in \mathbb{Q}_+ \; \rightarrow \; \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr)\; \biggr]$$
with no additional assumptions.
Scratch work
The starting givens-goals diagram is
\begin{array}{c c c}
\text{Givens} & \qquad \qquad & \text{Goal} \\
\hline
& & \forall a \; \biggl[\; a \in \mathbb{Q}_+ \; \rightarrow \; \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr)\; \biggr]
\end{array}
$\\[15pt]$
We introduce the new variable $a$ into the proof to stand for an arbitrary object
\begin{array}{c c c}
\text{Givens} & \qquad \quad \qquad \qquad & \text{Goal} \\
\hline
& & a \in \mathbb{Q}_+ \; \rightarrow \; \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr)
\end{array}
$\\[15pt]$
Since our goal is a conditional statement we begin by assuming that the antecedent is true
\begin{array}{c c c}
\text{Givens} & \qquad \qquad \qquad \qquad \qquad \qquad & \text{Goal} \\
\hline
a \in \mathbb{Q}_+ & & \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr)
\end{array}
$\\[15pt]$
Assuming that $a \in \mathbb{Q}_+$ allows us to use the definition of positive rational number
\begin{array}{c c c}
\text{Givens} & & \text{Goal} \\
\hline
a \in \mathbb{Q}_+ & & \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr) \\
\exists \ m \ \exists \ n \; \Bigl( \; m,n \in \mathbb{Z}_+ \; \land \; a = m/n \;\Bigr) & &
\end{array}
$\\[15pt]$
We let $m_0, n_0$ stand for positive integers such that $a = m_0 /n_0$ (existential instantiation)
\begin{array}{c c c}
\text{Givens} & \qquad \qquad \qquad \qquad & \text{Goal} \\
\hline
a \in \mathbb{Q}_+ & & \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr) \\
m_0, n_0 \in \mathbb{Z}_+ & &\\
a = m_0/n_0 & & \\
\end{array}
$\\[15pt]$
We let $d$ stand for $\operatorname{gcd}(m_0,n_0)$
\begin{array}{c c c}
\text{Givens} & \qquad \qquad \qquad & \text{Goal} \\
\hline
a \in \mathbb{Q}_+ & & \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr) \\
m_0, n_0 \in \mathbb{Z}_+ & &\\
a = m_0/n_0 & & \\
d = \operatorname{gcd}(m_0,n_0) &&
\end{array}
$\\[15pt]$
Let produce positive integers $r,s$
\begin{array}{c c c}
\text{Givens} & \qquad \qquad \qquad \qquad \qquad \qquad & \text{Goal} \\
\hline
a \in \mathbb{Q}_+ & & r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \\
m_0, n_0 \in \mathbb{Z}_+ & &\\
a = m_0/n_0 & & \\
d = \operatorname{gcd}(m_0,n_0) && \\
r = m_0/d && \\
s = n_0/d &&
\end{array}
$\\[15pt]$
We treat the conjunction as separate goals
\begin{array}{c c c}
\text{Givens} & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad & \text{Goal} \\
\hline
a \in \mathbb{Q}_+ & & r,s \in \mathbb{Z}_+\\
m_0, n_0 \in \mathbb{Z}_+ & & a = r/s\\
a = m_0/n_0 & & \operatorname{gcd}(r,s) = 1\\
d = \operatorname{gcd}(m_0,n_0) && \\
r = m_0/d && \\
s = n_0/d &&
\end{array}
$\\[15pt]$
The try to prove $\operatorname{gcd}(r,s) = 1$ by contradiction
\begin{array}{c c c}
\text{Givens} & \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad & \text{Goal} \\
\hline
a \in \mathbb{Q}_+ & & r,s \in \mathbb{Z}_+\\
m_0, n_0 \in \mathbb{Z}_+ & & a = r/s\\
a = m_0/n_0 & & \textrm{contradiction}\\
d = \operatorname{gcd}(m_0,n_0) && \\
r = m_0/d && \\
s = n_0/d && \\
\operatorname{gcd}(r,s) \neq 1 &&
\end{array}
$\\[15pt]$
Form of final proof:
Let $a$ be arbitrary
$\quad$ Suppose $a \in \mathbb{Q}_+$. Let $m_0, n_0 \in \mathbb{Z}_+$ and $a = m_0 / n_0$. Let $d = \operatorname{gcd}(m_0,n_0)$ .
$\quad$$\quad$ Let $r = m_0/d$ and $s = n_0/d$.
$\quad$$\quad$$\quad$ [Proof of $r,s \in \mathbb{Z}_+$ goes here.]
$\quad$$\quad$$\quad$ [Proof of $a = r/s$ goes here.]
$\quad$$\quad$$\quad$ Suppose $\operatorname{gcd}(r,s) \neq 1$
$\quad$$\quad$$\quad$$\quad$ [Proof of contradiction goes here.]
$\quad$$\quad$$\quad$ Therefore $\operatorname{gcd}(r,s) = 1$
$\quad$$\quad$ Thus, $\exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr)$.
$\quad$ Therefore $a \in \mathbb{Q}_+ \; \rightarrow \; \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr)$.
Since $a$ was arbitrary, we can conclude that $\forall a \; \biggl[\; a \in \mathbb{Q}_+ \; \rightarrow \; \exists \ r \ \exists \ s \; \Bigl( \; r,s \in \mathbb{Z}_+ \; \land \; a = r/s \; \land \; \operatorname{gcd}(r,s) = 1 \;\Bigr)\; \biggr].$
Are you the author of How to Prove it?
– fire-bee May 27 '22 at 11:49