Here is an intuitive answer which may address your concern about $\sigma$-algebras and information.
Assume that only $3$ mutually exclusive events may happen at time $T$. Let these be denoted by $\omega_1$, $\omega_2$, $\omega_3$. The probabilities of these events are estimated to be $p_1, p_2, p_3 \in [0, 1]$ such that $p_1+p_2+p_3=1$. At time $T$, based on the occurrence of a particular event, John, Jack and Jane will take actions $X$, $Y$, $Z$ from a set of possible actions $A=\{0, 1, 2\}$.
Now consider the task of modelling $X$, $Y$, $Z$ mathematically, such that you can speak of the probability of a particular action taken. Finding the right model for $X$, $Y$, $Z$ will depend on the possible restrictions that John, Jack and Jane face at time $T$. Assume that at time $T$, the individual circumstances of John, Jack and Jane are as follows:
At time $T$, John will know exactly which of the mutually exclusive events $\omega_1, \omega_2, \omega_3$ has occurred and will take the action $1$, $2$, $3$, respectively.
At time $T$, Jack will only be able to tell whether $\omega_1$ has occurred or not. So if $\omega_1$ has occurred, he will take action $1$. If $\omega_1$ has not occurred, Jack will know that either $\omega_2$ or $\omega_3$ has occurred, but he will not know which one exactly, and, in either case, he will take action $2$.
At time $T$, Jane will only be able to tell whether $\omega_2$ has occurred or not. So if $\omega_2$ has occurred, she will take action $1$. If $\omega_2$ has not occurred, Jane will know that either $\omega_1$ or $\omega_3$ has occurred, but she will not know which one exactly, and, in either case, she will take action $3$.
Now, let us come up with a suitable mathematical model for the taken actions $X$, $Y$, $Z$. This will be accomplished by designing an individual probability space $(\Omega, \mathcal{F}, \mathbb{P})$ for the random variables $X$, $Y$, $Z$. In all the three cases, $\Omega$ will be given by $\{\omega_1, \omega_2, \omega_2\}$. However, the $\sigma$-algebra $\mathcal{F}$ should model the information accessible at time $T$ to the person under question. By saying information, we mean the events that are observable at time $T$ to the person under question.
John. According to the description, action $X$ taken by John is defined as follows: $X(\omega_1)=1$, $X(\omega_2)=2$, $X(\omega_3)=3$. Since John has complete information at time $T$, i.e., he is able to distinguish which of the mutually exclusive events $\omega_1$, $\omega_2$ and $\omega_3$ has occurred, the corresponding sigma-algebra $\mathcal{F}$ should reflect this fact. Therefore $\mathcal{F}$ should contain all the individual events $\{\omega_1\}$, $\{\omega_2\}$, $\{\omega_3\}$. Of course, John is also able to observe the event "either $\omega_1$ or $\omega_2$ has occurred", which is modelled by including the union of $\{\omega_1\}$ and $\{\omega_2\}$, given by $\{\omega_1, \omega_2\}$, into $\mathcal{F}$. Through a similar line of thought, we see that $\mathcal{F}$ has to be the power set of $\Omega$:
$$
\mathcal{F}_1 = \mathscr{P}(\Omega) = \sigma(X).
$$
The mutually exclusive events $\{\omega_1\}$, $\{\omega_2\}$, $\{\omega_3\}$ generate $\mathcal{F}$, and the values of $X$ are captured/determined by the values on these generating events.
Jack. According to the description, action $Y$ taken by Jack is defined as follows: $Y(\omega_1)=1$, $Y(\omega_2)=2$, $Y(\omega_3)=2$. Since at time $T$, John is able to distinguish the events "$\omega_1$ has occurred" and "either $\omega_2$ or $\omega_3$ has occurred", we include $\{\omega_1\}$ and $\{\omega_2, \omega_3\}$ in $\mathcal{F}$. Of course John is also able to tell whether either of the two aforementioned events has occurred, which is reflected by including $\{\omega_1, \omega_2, \omega_3\}$ in $\mathcal{F}$. Hence,
$$
\mathcal{F}_2 = \{ \{\omega_1, \omega_2, \omega_3\}, \{\omega_2, \omega_3\}, \{\omega_1\}, \emptyset \} = \sigma(Y).
$$
The mutually exclusive events $\{\omega_1\}$, $\{\omega_2, \omega_3\}$ generate $\mathcal{F}$, and the values of $Y$ are captured/determined by the values on these generating events.
Jane. According to the description, action $Z$ taken by Jane is defined as follows: $Z(\omega_1)=3$, $Z(\omega_2)=1$, $Z(\omega_3)=3$. Since at time $T$, Jane is able to distinguish the events "$\omega_2$ has occurred" and "either $\omega_1$ or $\omega_3$ has occurred", we include $\{\omega_2\}$ and $\{\omega_1, \omega_3\}$ in $\mathcal{F}$. Of course Jane is also able to tell whether either of the two aforementioned events has occurred, which is reflected by including $\{\omega_1, \omega_2, \omega_3\}$ in $\mathcal{F}$. Hence,
$$
\mathcal{F}_3 = \{ \{\omega_1, \omega_2, \omega_3\}, \{\omega_1, \omega_3\}, \{\omega_2\}, \emptyset \} = \sigma(Z).
$$
The mutually exclusive events $\{\omega_2\}$, $\{\omega_1, \omega_3\}$ generate $\mathcal{F}$, and the values of $Y$ are captured/determined by the values on these generating events.
It is easy to see that $X, Y, Z$ are all $\mathcal{F}_1$-measurable, since $\mathcal{F}_1$ is the $\sigma$-algebra with complete information. But $X$ is not $\mathcal{F}_2$-measurable, i.e., not all the events associated with $X$ are observable in $\mathcal{F}_2$. For example, $\mathcal{F}_2$ does not contain $\{\omega_2\}$, and one cannot speak of the probability of $X=2$ on the probability space $(\Omega, \mathcal{F}_2, \mathbb{P})$.