Denote $\mathcal F$ as the function class consisting of gradients of all real-valued convex functions in $\mathbb R^d$, that is, $\mathcal F = \{ \nabla \phi ~|~ \phi: \mathbb R^d \to \mathbb R \text{ and $\phi$ is convex}\}$. Note that every element of $\mathcal F$ is a function from $\mathbb R^d$ to $\mathbb R^d$. Then is $\mathcal F$ closed under composition operation? That is, suppose $f \in \mathcal F$ and $ g\in \mathcal F$, do we have $f\circ g \in \mathcal F$ where $\circ$ denotes function composition?
Note: the statement should be true for $d = 1$ since:
- Gradient of a univariate real-valued convex function is non-decreasing;
- Composition of two non-decreasing functions is still non-decreasing;
- Non-decreasing gradient corresponds to a convex function.
In max_zorn 's answer below he identifies:
- $f(x,y)= x^2+xy+\frac{1}{2}y^2=\frac{1}{2}[x,y]\begin{bmatrix} 2 & 1\ 1 & 1\end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix}$ and
- $g(x,y) = \frac{5}{2}x^2+2xy+\frac{1}{2}y^2=\frac{1}{2}[x,y]\begin{bmatrix} 5 & 2\ 2 & 1\end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix}$.
– Selrach Dunbar May 24 '22 at 03:31Thus, $F \circ G: \langle x,y \rangle\mapsto \left<12x+5y,7x+3y\right>=\begin{bmatrix} 2 & 1\ 1 & 1\end{bmatrix} \begin{bmatrix} 5 & 2\ 2 & 1\end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix}=\begin{bmatrix} 12 & 5\ 7 & 3\end{bmatrix} \begin{bmatrix} x \ y \end{bmatrix}$ which is not the gradient of any scalar function $\phi$.
– Selrach Dunbar May 24 '22 at 03:32