Instead of considering the sum, let's consider the matrix form.
Let the discrete Fourier transform matrix to be $F$, which can be expressed using $\omega$ $n$th unit root. $\omega^n=1$
$$
F_{ik} = \exp(-j\frac{2\pi}{n} ki) =\omega^{ki},\;\omega=\exp(-j\frac{2\pi}{n})
$$
In matrix form it looks like this
$$
F=\begin{bmatrix}
1 & 1 & 1 & ... & 1 \\
1 & \omega & \omega^2 & ... & \omega^{n-1}\\
1 & \omega^2 & \omega^4 & ... & \omega^{2(n-1)}\\
& & & ...\\
1 & \omega^{n-1} & \omega^{2(n-1)} & ... & \omega^{(n-1)^2}\\
\end{bmatrix}
$$
Then DFT transform in your definition is
$$
b=Fa
$$
What is to be proved is the following ($\bar b$ means complex conjugate)
$$
\sum_i |b_i|^2=\bar b^T b = n a^Ta=n\sum_i a_i^2
$$
Then we just need to prove
$$
\forall a, \bar b^T b = \bar a^T\bar F^T F a = a^T\bar F F a=na^Ta\\
\bar F^T F = n I_n
$$
The first line used the fact $a$ is real and $F$ is symmetric.
So we just need to show the $F$ in your definition satisfy $\bar FF = nI$. (in standard definition $F$ is normalized and thus unitary, in your case it's not)
Note that $\bar F$ just substitute $\omega\to \omega^{-1}$
Thus for a pair of index $i,k$ if $i==k$
$$
(\bar FF)_{ii}=\sum_{l=0}^{n-1} \omega^{-li}\omega^{li} = \sum_{l=0}^{n-1}1=n
$$
If $i\neq k$, the last equation used the rotational symmetry of the sum of $n$ different $n$th unit root.
$$
(\bar FF)_{ik}=\sum_{l=0}^{n-1} \omega^{-li}\omega^{lk} = \sum_{l=0}^{n-1}\omega^{l(k-i)}=0
$$
So we get
$$
\bar FF = nI\\
\bar b^T b = na^Ta
$$
For the sum, with nonzero integer $\Delta$,
$$
\begin{align}
\sum_{l=0}^{n-1}\omega^{l\Delta} = &\omega^{-\Delta}\sum_{l=0}^{n-1}\omega^{(l+1)\Delta}\\
=&\omega^{-\Delta}\sum_{l=1}^{n}\omega^{l\Delta}\\
=&\omega^{-\Delta}(\sum_{l=1}^{n-1}\omega^{l\Delta} + 1)\; (\mbox{note
}
\omega^n=1)\\
=&\omega^{-\Delta}\sum_{l=0}^{n-1}\omega^{l\Delta}
\end{align}
$$