Fix $(\varphi, \psi) \in \Phi_c$.
- There are a $\mu$-null set $N_x$ and $\nu$-null net $N_y$ such that $\varphi(x)+\psi(y) \le c(x,y)$ for all $(x,y) \in N_x^c \times N_y^c$.
- We re-define $\varphi, \psi$ by letting them take value $-\infty$ on $N_x, N_y$ respectively. In this way, $\varphi(x)+\psi(y) \le c(x,y)$ for all $(x,y) \in X \times Y$.
We define $\varphi^c$ by
$$
\varphi^c (y) := \inf_{x\in X} [c(x,y) - \varphi(x)].
$$
- The infimum of a collection of extended real-valued measurable functions is again a measurable function, so $\varphi^c$ is measurable.
- There is $x_0 \in N^c_x$, so $\varphi^c (y) \le c(x_0,y)-\varphi(x_0) <+\infty$ for all $y \in Y$.
- Given $y\in Y$, $\varphi(x)+\psi(y) \le c(x,y)$ for all $x \in X$, so $\varphi^c (y) \ge \psi(y)$ for all $y\in Y$.
We define $\varphi^{cc}$ by
$$
\varphi^{cc} (x) := \inf_{y\in Y} [c(x,y) - \varphi^c (y)].
$$
For all $x\in X$,
$$
\begin{align}
\varphi^{cc} (x) &= \inf_{y\in Y} \left [c(x,y) - \inf_{z\in X} [c(z,y) - \varphi(z)] \right] \\
&= \inf_{y\in Y} \left [c(x,y) + \sup_{z\in X} [-c(z,y) + \varphi(z)] \right] \\
&= \inf_{y\in Y} \sup_{z\in X} [c(x,y) -c(z,y) + \varphi(z)] \\
&\ge \inf_{y\in Y} \varphi(x) =\varphi(x) \quad \text{by picking} \quad z=x.
\end{align}
$$
There is $y_0 \in N_y^c$. Then
$$
\varphi^{cc} (x) \le c(x, y_0) - \varphi^c (y_0) \le c(x, y_0) - \psi(y_0) <+\infty \quad \forall x\in X.
$$
For all $(x,y) \in X \times Y$,
$$
\varphi^{cc} (x) + \varphi^c (y) = \inf_{z\in Y} [c(x,z) - \varphi^c(z)] + \varphi^c (y) \le [c(x,y) - \varphi^c (y)] + \varphi^c (y)= c(x,y).
$$
- There are a $\mu$-null set $M_x$ and $\nu$-null set $M_y$ such that $c (x, y) \le c_X(x)+c_Y(y)$ for all $(x, y) \in M_x^c \times M_y^c$.
- We re-define $c_X, c_Y$ such that $c_X (x) = c_Y(y) := +\infty$ for all $(x, y) \in M_x \times M_y$. In this way, $c(x,y) \le c_X(x)+c_Y(y)$ for all $(x,y) \in X \times Y$.
Let
$$
a := \inf_{y\in Y} [c_Y(y) - \varphi^c (y)].
$$
First,
$$
a \le c_Y(y_0) - \varphi^c (y_0) \le c_Y(y_0) - \psi (y_0) < +\infty.
$$
There is $x_1 \in (N_x \cup M_x)^c$, so
$$
\begin{align}
c_Y(y) - \varphi^c (y) &= c_Y(y) - \inf_{x\in X} [c(x,y) - \varphi(x)] \\
&= \sup_{x\in X} [c_Y(y)-c(x,y) + \varphi(x)] \\
&\ge \sup_{x\in X} [\varphi(x)-c_X(x)] \\
&\ge \varphi(x_1)-c_X(x_1) \\
&> -\infty.
\end{align}
$$
It follows that $a \in \mathbb R$. Clearly, $a \le c_Y(y) - \varphi^c (y)$ for all $y\in Y$, so $\varphi^c+a \le c_Y$. We have
$$
\begin{align}
(\varphi^{cc} (x)-a) - c_X(x) &= \inf_{y\in Y} [c(x,y) - \varphi^c (y)]-a - c_X(x) \\
&= \inf_{y\in Y} [(c(x,y)-c_X(x)) - \varphi^c (y)] -a \\
&\le \inf_{y\in Y} [c_Y(y) - \varphi^c (y)] -a \\&=0.
\end{align}
$$
Clearly, $(\varphi', \psi') := (\varphi^{cc}-a, \varphi^c+a)$ satisfies the requirement.