Let $C\subset \mathbb{R}^n$ a convex set that has nonempty interior.
Show: $y\in\mathrm{cl}C,\;x\in\mathrm{Int}C \; \implies\; \lambda x+(1-\lambda)y\in\mathrm{Int}C$
My attempt: The case $y\in\mathrm{Int}C$ is obvious, I am struggling with $y\in\partial C$, so $y$ on the boundary of $C$.