I was solving the following equation,$$\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2}\tan ^{-1}\left(x\right)$$
But I missed a solution (don't know where's the mistake in my work).
Here's my work: $$\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2}\tan ^{-1}\left(x\right)$$ Putting $x = \tan(\theta)$ $$\begin{align} \tan ^{-1}\left(\frac{1-\tan\theta}{1+\tan\theta}\right)&=\frac{1}{2}\tan ^{-1}\left(\tan\theta\right)\\ \tan ^{-1}\left(\tan\left(\frac\pi 4 - \theta\right)\right)&=\frac{1}{2}\theta\\ \frac\pi 4 - \theta&=\frac{1}{2}\theta\\ \frac\pi 4&=\frac{1}{2}\theta + \theta\\ \frac\pi 4&=\frac{3}{2}\theta\\ \frac\pi 6&=\theta\\ \frac\pi 6&=\tan^{-1}(x)\\ \tan\frac\pi 6&=(x)\\ \frac1{\sqrt{3}}&=x\end{align}$$
I got only one solution, but the answer in my textbook is $\pm\frac{1}{\sqrt{3}}$. Where is the mistake?