Prove $f^{-1}(\overline{A}∩B)⊆f^{-1}(\overline{A})∩f^{-1}(B)$
Where f: P→Q and A and B are non empty subsets of Q
So far I have:
$f^{-1}(\overline{A}∩B)⊆f^{-1}(\overline{A})∩f^{-1}(B)$
$f^{-1}(\overline{A}∩B)↔{x∈f^{-1}(\overline{A})∧x∈f^{-1}(B)}$
$f^{-1}(\overline{A}∩B)↔{x∈f^{-1}(\overline{A})}∧{x∈f^{-1}(B)}$
$f^{-1}(\overline{A}∩B)↔f^{-1}(\overline{A})∩f^{-1}(B)$
$f^{-1}(\overline{A}∩B)⊆f^{-1}(\overline{A})∩f^{-1}(B)$
but I'm unsure if this is the correct way to prove it
Any help would be appreciated.