Let $a \notin \mathbb{Z}$ and $a \neq \frac{1}{2}$. Prove that
$$\sum_{n=0}^{\infty} \frac{2}{\Gamma \left ( a + n \right ) \Gamma \left ( a - n \right )} = \frac{2^{2a-2}}{\Gamma \left ( 2a - 1 \right )} + \frac{1}{\Gamma^2 (a)}$$
Attempt
Using the fact that
\begin{align*} \frac{1}{\Gamma\left ( a+x \right ) \Gamma \left ( \beta - x \right )} &= \frac{1}{\left ( a+x-1 \right )! \left ( \beta-x-1 \right )!} \\ &=\frac{1}{\Gamma \left ( a + \beta - 1 \right )} \frac{\left ( a + \beta-2 \right )!}{\left ( a + x -1 \right )! \left ( \beta - x -1 \right )!} \\ &=\frac{1}{\Gamma \left ( a + \beta - 1 \right )} \binom{a + \beta - 2}{a + x -1} \end{align*}
the question really boils down to the sum
$$\mathcal{S} = \sum_{n=0}^{\infty} \binom{2a-2}{a+n-1}$$
To this end,
\begin{align*} \sum_{n=0}^{\infty} \binom{2a-1}{a+n-1} &=\frac{1}{2\pi i} \sum_{n=0}^{\infty} \oint \limits_{|z|=1} \frac{\left ( 1+z \right )^{2a-1}}{z^{a+n}}\, \mathrm{d}z \\ &= \frac{1}{2\pi i} \oint \limits_{|z|=1} \frac{\left ( 1 + z \right )^{2a-1}}{z^a} \sum_{n=0}^{\infty} \frac{1}{z^n} \, \mathrm{d}z \\ &= \frac{1}{2\pi i} \oint \limits_{|z|=1} \frac{\left ( 1+z \right )^{2a-1}}{z^{a-1} \left ( z-1 \right )} \, \mathrm{d}z \end{align*}
using the handy identity $\displaystyle \binom{n}{k} = \frac{1}{2\pi i } \oint \limits_{\gamma} \frac{\left ( 1+z \right )^n}{z^{k+1}} \, \mathrm{d}z$. I think I'm on the right track, but I'm having a difficult time evaluating the last contour integral. Any help?