I started with:
$n=0: 13^{0+1} - 7^0 = 13-1 = 12$ divisible by 6.
$n=1: 13^{1+1} - 7^1 = 162 $ divisible by 6.
$13^{n+1} − 7^n = 6*k$ for any $k \in \mathbf{N}$
$n \longrightarrow n+1:$
\begin{align*}
13^{(n+1)+1} − 7^{n+1} &= 13^{n+2} − 7^{n+1}\\
&= 13^{n+2} − 7^{n+1}
\end{align*}
However this is where i'm stuck.