0

Assuming $a, b, c > 1$, then $(a, bc) = 1$ implies $b \not\mid a$, for if $b \mid a$, then we'd have $1 = (a, bc) \geq b > 1$ which is a contradiction. Likewise, $(a, bc) = 1$ also implies $c \not\mid a$.

So $b > 1$ and $(a, bc) = 1$ implies $b \not\mid a$ which implies $(a, b) < b > 1$. Can it be shown also that $(a, b) = 1$?

joseville
  • 1,477

0 Answers0