Prove the following:
- $U_n=\{Z \in \mathbb{C} : Z^n = 1\}$. Then, show that $U_a \cap U_b = U_{gcd(a,b)}$
- Hence prove that, $gcd(x^a-1,x^b-1)=x^{gcd(a,b)}-1$
I started out with if $α \in U_a$, then $α = e^{\frac{2ikπ}a}$ where $0<k<a$ and if $β \in U_b$, then $β = e^{\frac{2ilπ}b}$ where $0<l<b$. So, if $α=β$, then $e^{\frac{2ikπ}a}=e^{\frac{2ilπ}b}$ $\implies \frac kl=\frac ba$
Then i claimed that : For every $k, 0<k<gcd(a,b)$, we find $l$ such that $\frac kl=\frac ba$
But then I am not able to prove my claim. Please help me.