I am trying to solve
\begin{equation} u(x,t)=\frac{6\sqrt{2}}{\sqrt{\pi}}\int_0^\infty \frac{\sin3\lambda}{\lambda}\cos(\lambda x)e^{-\frac{\lambda^2}{4}t}d\lambda \end{equation}
which gives on Wolfram Alpha:
\begin{equation} u(x,t)=3\sqrt{\frac{{\pi}}{2}}\Bigg[\operatorname{erf}\bigg(\frac{3-x}{\sqrt{t}}\bigg)+\operatorname{erf}\bigg(\frac{3+x}{\sqrt{t}}\bigg)\Bigg] \end{equation}
I try to re-write this into complex terms, where $\lambda$ is the variable and $x$ and 3 are mere coefficients. The first two terms (assuming this is correct extrapolation of the Eulers formula for sine and cosine):
\begin{equation} \frac{\sin3\lambda}{\lambda}\cos(\lambda x)=\frac{e^{3i\lambda}-e^{-3i\lambda}}{2i\lambda}\frac{e^{ix\lambda}+e^{-ix\lambda}}{2} \end{equation}
Thus I get
\begin{equation} u(x,t)=\frac{6\sqrt{2}}{\sqrt{\pi}}\int_0^\infty \frac{e^{3i\lambda}-e^{-3i\lambda}}{2i\lambda}\frac{e^{ix\lambda}+e^{-ix\lambda}}{2} e^{-\frac{\lambda^2}{4}t}d\lambda \end{equation}
Then I set by substitution $u=\lambda^2\rightarrow \lambda=\sqrt{u}$, and $du=2\lambda d\lambda\rightarrow d\lambda=\frac{du}{2\lambda}$
It generates a simpler form:
\begin{equation} \frac{6\sqrt{2}}{\sqrt{\pi}i}\bigg[\int_0^\infty e^{a\sqrt{u}}e^{-\frac{u}{4}t}du+\int_0^\infty e^{b\sqrt{u}}e^{-\frac{u}{4}t}du-\int_0^\infty e^{c\sqrt{u}}e^{-\frac{u}{4}t}du-\int_0^\infty e^{d\sqrt{u}}e^{-\frac{u}{4}t}du\bigg] \end{equation}
where, $a, b, c, d$ are the coefficients in the exponents $a=3i+ix, \ b=3i-ix,\ c=ix-3i,\ d=-3i-ix$
But I can't get further
Any ideas?
Thanks