0

I'm trying to prove this version of Portmanteau theorem. Could you verify if my attempt is fine?


Let $(X, d)$ be a metric space and $\mathcal P(X)$ the space of all Borel probability measures on $X$.

Theorem: Let $\mu, \mu_1, \mu_2, \ldots \in \mathcal P(X)$. Then $\mu_n \to \mu$ weakly if and only if $$ \liminf_n \int f \mathrm d \mu_n \ge \int f \mathrm d \mu $$ for all lower semi-continuous and bounded from below function $f:X \to \mathbb R \cup \{+\infty\}$.

I post my proof separately as below answer. If other people post an answer, of course I will happily accept theirs. Otherwise, this allows me to subsequently remove this question from unanswered list.

Analyst
  • 5,637

1 Answers1

0

Lemma 1: Let $f:X \to \mathbb R \cup \{+\infty\}$ be lower semi-continuous and bounded from below. Then there is an increasing sequence $(f_n)$ of $n$-Lipschitz continuous functions such that $f_n \nearrow f$ pointwise.

Lemma 2: Let $X,Y$ be nonempty and $f:X\times Y \to \mathbb{R}$. Then$$\sup_{y\in Y} \inf_{x\in X}f(x,y) \leq \inf_{x\in X} \sup_{y\in Y}f(x,y).$$

Lemma 3: Let $X,Y$ be nonempty and $f:X\times Y \to \mathbb{R}$. Then$$\sup_{y\in Y} \sup_{x\in X}f(x,y) = \sup_{(x,y) \in X \times Y} f(x,y) = \sup_{x\in X} \sup_{y\in Y}f(x,y).$$


Let's prove the first direction. Let $\mu, \mu_1, \mu_2, \ldots \in \mathcal P(X)$ such that $\mu_n \to \mu$ weakly. Fix a lower semi-continuous function $f:X \to \mathbb R \cup \{+\infty\}$ that is bounded from below. WLOG, we assume $f$ is bounded by $0$. By Lemma 1, there is an increasing sequence $(f_m)$ of $m$-Lipschitz continuous functions such that $0\le f_m \nearrow f$ pointwise. Then \begin{align} \liminf_n \int f \mathrm d \mu_n &= \liminf_n \int \sup_m f_m \mathrm d \mu_n \\ &= \liminf_n \sup_m \int f_m \mathrm d \mu_n \quad \text{by monotone convergence}\\ &= \sup_n \inf_{k\ge n} \sup_m \int f_m \mathrm d \mu_k\\ &\ge \sup_n \sup_m \inf_{k\ge n} \int f_m \mathrm d \mu_k \quad \text{by Lemma 2} \\ &= \sup_m \sup_n \inf_{k\ge n} \int f_m \mathrm d \mu_k \quad \text{by Lemma 3} \\ &= \sup_m \lim_n \int f_m \mathrm d \mu_n\\ &= \sup_m \int f_m \mathrm d \mu \quad \text{by weak convergence} \\ &= \int \sup_m f_m \mathrm d \mu \quad \text{by monotone convergence} \\ &= \int f \mathrm d \mu. \end{align}

Let's prove the reverse direction. Fix a continuous bounded $f:X \to \mathbb R$. Clearly, $f$ and $-f$ are l.s.c. and bounded from below. So $$ \liminf_n \int f \mathrm d \mu_n \ge \int f \mathrm d \mu \quad \text{and} \quad \liminf_n \int -f \mathrm d \mu_n \ge \int -f \mathrm d \mu. $$

Then $$ \liminf_n \int f \mathrm d \mu_n \ge \int f \mathrm d \mu \quad \text{and} \quad -\limsup_n \int f \mathrm d \mu_n \ge -\int f \mathrm d \mu. $$

This completes the proof.


Update: I have found another approach below.

Let's prove the first direction. Let $\mu, \mu_1, \mu_2, \ldots \in \mathcal P(X)$ such that $\mu_n \to \mu$ weakly. Fix a lower semi-continuous function $f:X \to \mathbb R \cup \{+\infty\}$ that is bounded from below. WLOG, we assume $f$ is bounded by $0$.

By Lemma 1, there is an increasing sequence $(f_m)$ of $m$-Lipschitz continuous functions such that $0\le f_m \nearrow f$ pointwise. Let $g_m := \min \{f_m, m\}$. Then $(g_m)$ is a sequence of continuous bounded functions such that $0\le g_m \nearrow f$ pointwise. We have $$ \int f \mathrm d \mu_n \ge \int g_m \mathrm d \mu_n \quad \forall m \in \mathbb N. $$

Then $$ \liminf_n \int f \mathrm d \mu_n \ge \liminf_n \int g_m \mathrm d \mu_n = \int g_m \mathrm d \mu \quad \forall m \in \mathbb N. $$

Then $$ \begin{align} \liminf_n \int f \mathrm d \mu_n &\ge \liminf_m \int g_m \mathrm d \mu \\ &\ge \int \liminf_m g_m \mathrm d \mu \quad \text{by Fatou Lemma} \\ &= \int f \mathrm d \mu. \end{align} $$

Let's prove the reverse direction. Fix a continuous bounded $f:X \to \mathbb R$. Clearly, $f$ and $-f$ are l.s.c. and bounded from below. So $$ \liminf_n \int f \mathrm d \mu_n \ge \int f \mathrm d \mu \quad \text{and} \quad \liminf_n \int -f \mathrm d \mu_n \ge \int -f \mathrm d \mu. $$

Then $$ \liminf_n \int f \mathrm d \mu_n \ge \int f \mathrm d \mu \quad \text{and} \quad -\limsup_n \int f \mathrm d \mu_n \ge -\int f \mathrm d \mu. $$

This completes the proof.

Analyst
  • 5,637