$$
\begin{align}
\lim_{n\to\infty}\sqrt{n}\int_0^\pi\left(\frac{1+\cos(t)}{2}\right)^n\,\mathrm{d}t
&=\lim_{n\to\infty}\sqrt{n}\int_0^\pi\cos^{2n}(t/2)\,\mathrm{d}t\\
&=\lim_{n\to\infty}2\sqrt{n}\int_0^{\pi/2}\cos^{2n}(t)\,\mathrm{d}t\\
&=\lim_{n\to\infty}2\sqrt{n}\int_0^{n^{-1/3}}\left(1-\sin^2(t)\right)^n\,\mathrm{d}t\\
&=\lim_{n\to\infty}2\sqrt{n}\int_0^{n^{-1/3}}\left(1-t^2+\color{#C00000}{O}\big(t^4\big)\right)^n\,\mathrm{d}t\\
&=\lim_{n\to\infty}2\int_0^{n^{1/6}}\left(1-t^2/n+\color{#C00000}{O}\big(t^4/n^2\big)\right)^n\,\mathrm{d}t\\
&=\lim_{n\to\infty}2\int_0^{n^{1/6}}e^{-t^2+\color{#00A000}{O}(t^4/n)}\,\mathrm{d}t\\
&=2\int_0^\infty e^{-t^2}\,\mathrm{d}t\\[6pt]
&=\sqrt\pi
\end{align}
$$
Where, for $n\ge3$, the red $O$ has constant $1/3$ and the green $O$ has constant $2$.
Note that
$$
\begin{align}
\lim_{n\to\infty}\sqrt{n}\int_{n^{-1/3}}^{\pi/2}\left(1-\sin^2(t)\right)^n\,\mathrm{d}t
&\le\lim_{n\to\infty}\frac\pi2\sqrt{n}\left(1-\frac4{\pi^2}n^{-2/3}\right)^n\\
&\le\lim_{n\to\infty}\frac\pi2\sqrt{n}\,e^{-4n^{1/3}/\pi^2}\\[4pt]
&=0
\end{align}
$$
Motivation
As Didier points out, this approach is less elegant than those that make use of certain trigonometric identities, and perhaps Rudin posed this problem using trigonometric functions because one can use trigonometric identities to get a more elegant solution. However, I had computed the integral of $\cos^n(t)$ too many times recently, and I wanted to single out key sufficient features of $f$ that allow the limit
$$
\lim_{n\to\infty}\sqrt{n}\int_0^\pi f(t)^n\,\mathrm{d}t=\sqrt\pi
$$
those being
$f(t)=1-t^2+O(t^4)$
$f(t)\le1-kt^2$ for some $k\gt0$