A recent post addressed the problem of the closed form of $$I(k)=\int_0^\pi \Bigg[ \frac {x(\pi-x)} {\sin(x)}\Bigg]^k \,dx$$ When $k$ is a positive integer, they seem to be known except that they require a lot of computer ressources as soon as $k\geq 10$.
Just for the fun of it, I tried to obtain approximate values of these integrals for any exponent.
Because ot the analogy with Bhaskara I's sine approximation formula, my leading idea was to first approximate the integrand $$x(\pi-x)\csc (x) \sim a -bx(\pi-x)$$ and the coefficient $(a,b)$ where obtained minimizing the norm $$\Phi(a,b)=\int_0^\pi \Big[x(\pi-x)\csc (x)-\big[a -bx(\pi-x) \big] \Big]^2\,dx$$ which is analytic.
The optimal values are $$a=\frac{18 \left(14 \pi ^2 \zeta (3)-155 \zeta (5)\right)}{\pi ^3}\qquad \qquad b=\frac{30 \left(49 \pi ^2 \zeta (3)-558 \zeta (5)\right)}{\pi ^5}$$ $$\Phi(a,b)=\frac{6 \left(\pi ^4 \left(\pi ^2-2009 \zeta (3)\right) \zeta (3)+45570 \pi ^2 \zeta (3) \zeta (5)-259470 \zeta (5)^2\right)}{\pi ^5}=1.903\times 10^{-4}$$ Notice that these values are relatively close to $a=\frac{5 \pi ^2}{16}$ and $b=-\frac 14$ given using 2; however, the current norm is four times smaller.
All of that leads to $$J(k)=\int_ 0^\pi \big[a -bx(\pi-x) \big]^k\,dx$$ $$\color{blue}{J(k)=\pi \,\left(\frac{3(930 \zeta (5)-77 \pi ^2 \zeta (3))}{2 \pi ^3}\right)^k\, _2F_1\left(\frac{1}{2},-k;\frac{3}{2};-\frac{5 \left(49 \pi ^2 \zeta (3)-558 \zeta (5)\right)}{930 \zeta (5)-77 \pi ^2 \zeta (3)}\right)}$$
Just as for $I(k)$ (see @user64494's comment), $\lim_{k\to \infty } \, \frac{J (k+1)}{J(k)} =\pi^-$.
When $k$ is an integer, $\, _2F_1\left(\frac{1}{2},-k;\frac{3}{2};z\right)$ are quite simple polynomials with interesting patterns $$\left( \begin{array}{cc} k & \, _2F_1\left(\frac{1}{2},-k;\frac{3}{2};z\right)\\ 1 & 1-\frac{1}{3}z\\ 2 & 1-\frac{2 }{3}z+\frac{1}{5}z^2 \\ 3 & 1-\frac{3 }{3}z+\frac{3 }{5}z^2-\frac{1}{7}z^3 \\ 4 & 1-\frac{4 }{3}z+\frac{6 }{5}z^2-\frac{4}{7}z^3+\frac{1}{9}z^4 \\ 5 & 1-\frac{5 }{3}z+\frac{10 }{5} z^2-\frac{10 }{7}z^3+\frac{5}{9}z^4-\frac{1}{11}z^5 \end{array} \right)$$
This seems to lead to decent approximations $$\left( \begin{array}{ccc} k & J(k) & I(k) \\ 1 & 8.41440 & 8.41440 \\ 2 & 22.6580 & 22.6582 \\ 3 & 61.3506 & 61.3546 \\ 4 & 167.057 & 167.093 \\ 5 & 457.510 & 457.738 \\ 6 & 1260.20 & 1261.41 \\ 7 & 3491.25 & 3497.00 \\ 8 & 9743.95 & 9752.77 \\ 9 & 27314.7 & 27360.7 \\ 10 & 76794.7 & 77205.2 \end{array} \right)$$
What looks interesting (at least to me) is that this works for non integer values of $k$ $$\left( \begin{array}{ccc} k & J(k) & I(k) \\ 1.234 & 10.6042 & 10.6042 \\ 2.345 & 31.9297 & 31.9303 \\ 3.456 & 96.8040 & 96.8156 \\ 4.567 & 295.557 & 295.662 \\ 5.678 & 908.812 & 909.529 \\ 6.789 & 2814.49 & 2818.65 \\ 7.890 & 8688.35 & 8709.72 \end{array} \right)$$ and even for complex values
$$\left( \begin{array}{ccc} k & J(k) & I(k) \\ 1+i & +4.61973 +7.00583 \,i & +4.61977 +7.00576 \,i \\ 1+2 i & -3.27763 +7.65210 \,i & -3.27715 +7.65218 \,i \\ 1+3 i & -8.08205 +1.46086 \,i & -8.08159 +1.46231 \,i \\ 2+i & +12.3359 +18.9310 \,i & +12.3353 +18.9310\,i \\ 2+2i & -9.04768 +20.5009 \,i & -9.04680 +20.4992 \,i \\ 2+3i & -21.8087 +3.57177 \,i & -21.8039 +3.57352 \,i \\ 3+i & +33.1122 +51.4419 \,i & +33.1083 +51.4458 \,i \\ 3+2i & -25.1135 +55.2172 \,i & -25.1179 +55.2074 \,i \\ 3+3i & -59.1718 +8.66441 \,i & -59.1523 +8.65622 \,i \end{array} \right)$$
My questions :
- do the $\, _2F_1\left(\frac{1}{2},-k;\frac{3}{2};z\right)$ correspond to known polynomials ?
- could it be possible to develop a recurrence rekation for $\, _2F_1\left(\frac{1}{2},-k;\frac{3}{2};z\right)$
- could we find better approximations ?
- could we obtain decent and rather detailed asymptotic formulae for $Ik$ and/or $J(k)$ ?